2012-12-11 10:05:35 Li_soso 阅读数 1077
  • BDTC2015大会精彩演讲PPT集锦

    中国大数据技术大会(Big Data Technology Conference,BDTC)是目前国内具影响、规模大的大数据领域的技术盛会。大会的前身是Hadoop中国云计算大会(Hadoop in China,HiC)。从2007年仅60人参加的技术沙龙到当下数千人技术盛宴,作为极具实战价值的专业交流平台,已经成功举办8届的中国大数据技术大会见证了中国大数据生态系统的建立、发展和演变。

    17107 人正在学习 去看看 CSDN

HBTC 2012 Hadoop与大数据技术大会演讲PPT资料

 

中国IT界技术盛会——Hadoop与大数据技术大会(HBTC 2012)于12月1日顺利落幕。本次大会以“大数据共享与开放技术”为主题,设定“Hadoop生态系统”、“大数据行业应用”、“大数据共享平台与应用”、“NoSQL与NewSQL”以及“大数据的技术挑战与发展趋势”五个分论坛。
本文整理了本次大会的演讲PPT资料,与Hadoop技术爱好者一起分享到来自一线专家的实践经验,展望Hadoop和大数据璀璨的发展未来。

 

虚拟化和云计算让Hadoop变得简单 董波

       

数据集成为Hadoop保驾护航 郑玮

       

如何在企业中应用HBase

     

 

如何在第一时间洞察大数据 Nikita Shamgunov

     

 

hadoop的典型应用与企业化之路 陈昭宇

     

 

驾驭大数据:如何实现大数据的应用性 孔宇华

     

 

海量数据分布式数据库的探索:Wasp 代志远

     

 

海量数据搬运工-DataStream 顾费勇

     

 

攻击大数据 盼柱廷

     

 

个性化:大数据暗海中的领航员 柏林森

     

 

Hadoop在大型内容推荐系统的实践

     

 

大数据研究的技术层面和主要研究内容 黄宜华

     

2012-12-06

大数据探索-阿里巴巴数据交换平台 强琦

     

2012-12-06

大数据的挑战问题和发展趋势 程学旗

     

2012-12-06

从战略角度解读大数据的机遇

       

 

 

从大数据中获得新型可用的洞见 George Lapis

     

2012-12-06

并行处理在大数据分析中所面对的挑战 张晓东

     

2012-12-06

百度数据仓库体系介绍

     

2012-12-06

阿里Hadoop集群架构及服务体系 梁李印

     

2012-12-06

Tair存储引擎之路 王玉法pdf

     

2012-12-06

HIVE在腾讯分布式数据仓库实践分享 赵伟

     

2012-12-06

HDFS Name Node高可用性研究 Maheshwara Rao G

     

2012-12-06

HBase用例分析

     

2012-12-06

Hbase系统在搜索网页库的应用 赵健博

     

2012-12-06

HBase的二级索引

     

2012-12-06

HBase Coprocessor优化与实验 郭磊涛

     

2012-12-06

Hadoop在网盘和在线备份的应用与挑战 卢亿雷

     

2012-12-06

Hadoop内核在虚拟化平台上的优化与扩展 堵俊平

     

2012-12-06

Hadoop的英特尔之道 何京翔

     

2012-12-06

Hadoop的模式与实践 朱金生

       

 

Hadoop Security Overview 施宏良

     

2012-12-06

Hadoop Present and Future Eric Baldeschwieler

     

2012-12-06

Hadoop Namenode性能诊断及优化 王琤

     

2012-12-06

Future of big data analytics Ronaldo Ama

     

2012-12-06

Facebook开发HDFS和HBase的新进展 董思颖

     

2012-12-06

Apache Pig的性能优化 戴建勇

       

2017-09-20 15:53:51 weixin_33912445 阅读数 173
  • BDTC2015大会精彩演讲PPT集锦

    中国大数据技术大会(Big Data Technology Conference,BDTC)是目前国内具影响、规模大的大数据领域的技术盛会。大会的前身是Hadoop中国云计算大会(Hadoop in China,HiC)。从2007年仅60人参加的技术沙龙到当下数千人技术盛宴,作为极具实战价值的专业交流平台,已经成功举办8届的中国大数据技术大会见证了中国大数据生态系统的建立、发展和演变。

    17107 人正在学习 去看看 CSDN

关注“刘鹏看未来”公众号,方便获取后续的系列PPT

点击文末的阅读原文链接下载PPT

《大数据》自出版以来广受好评,并相继推出了全套PPT。

下载地址(第1章):http://www.thebigdata.cn/ZiLiaoXiaZai/33616.html

“刘鹏看未来”将于第一时间更新《大数据》配套课件,欢迎大家转发下载,也欢迎更多高校采用。

本次更新第1章 大数据概念与应用:

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

《大数据》配套PPT之一:第1章 大数据概念与应用

欢迎关注公众号:刘鹏看未来(ID:lpoutlook)!

本公众号将陆续提供全系列的《大数据》配套PPT下载!刘鹏教授,清华大学博士毕业,现任南京大数据研究院院长,兼任中国信息协会大数据分会副会长、中国大数据专家委员会委员、中国大数据技术与应用联盟副理事长,同时也是中国云计算(chinacloud.cn)、中国大数据(thebigdata.cn)网站的创始人,《云计算》、《大数据》教材主编。

了解和购买《大数据》教材:https://weidian.com/item.html?itemID=2040524569

2019-12-06 17:20:19 Ucloud_TShare 阅读数 18
  • BDTC2015大会精彩演讲PPT集锦

    中国大数据技术大会(Big Data Technology Conference,BDTC)是目前国内具影响、规模大的大数据领域的技术盛会。大会的前身是Hadoop中国云计算大会(Hadoop in China,HiC)。从2007年仅60人参加的技术沙龙到当下数千人技术盛宴,作为极具实战价值的专业交流平台,已经成功举办8届的中国大数据技术大会见证了中国大数据生态系统的建立、发展和演变。

    17107 人正在学习 去看看 CSDN

据报告显示到 2025 年,全球将产生 180ZB 的数据。这些海量的数据正是企业进行数字化转型的核心生产因素,然而真正被有效存储、使用和分析的数据不到百分之十。如何从 ZB 级的数据中寻找分析有价值的信息并回馈到业务发展才是关键。11 月 30 日 UCan 技术沙龙大数据专场(北京站)邀请了 5 位资深大数据技术专家分享他们对大数据的探索和应用实践。

大数据业务常态化的处理手段与架构衍变

很多开发人员在解决实际的业务问题时,经常会面临如何选择大数据框架的困惑。比如有十亿条数据需要进行聚合操作,是把数据放在 HBase+Phoenix 还是 Kudu+Impala 或是 Spark 上进行呢?到底哪种方案才能够达到降低开发运营成本且性能足够高的效果呢? UCloud 大数据工程师刘景泽分享了他的思考。

要想对数据进行分析决策,首先要有数据来源,其次要将采集到的数据进行存储,然后把这些数据进行汇总、聚合、计算,最后反馈到数据应用层。目前市面上主流的大数据框架有几百种,总结下来主要分为数据采集层、数据存储层、数据计算层和数据应用层。除此之外,一套完整的大数据技术栈还包括了任务调度、集群监控、权限管理和元数据管理。

ZB级的大数据探索与应用实践「附PPT」

面对数量众多、种类繁杂的技术栈,选择的自由度很高,但前提是不能把强依赖的框架给拆分开。这里刘景泽给出了一个通用型架构如下图所示:

ZB级的大数据探索与应用实践「附PPT」


图中左边 OLTP SDK 指的是后台接口,可以调用很多大数据的服务。从接口或者从 Flume 采集到的数据,直接送到 Kafka,然后送到 ES,再通过 ES 进行建模。整个过程相当于只使用了 ELK 这套系统,虽然很简单,但这也是一个大数据框架。对于数据量比较大、业务范围比较广的公司,往往要求原始数据要做冷备留存,这时 HDFS 就可以作为一个数据冷备的集群,HDFS + Hive 作为冷备也是非常常见的方案。

当业务规模发展到足够大的时候,需要进行一些聚合操作,如果从单独的一个框架拉出来的数据是不完整的,可能需要多个框架同时操作然后进行 join,这样操作的效率非常低。要解决这个问题,可以用大宽表的思路:第一步先把业务数据存放在 MySQL 或者 HBase 里面。然后通过 Spark 或 Flink,从 MySQL 或 HBase 里面通过异步 IO 的方式把所需要的维度数据拿出来进行 join,join 好的数据可以存在 HBase 中。到这一层的时候,所有的数据维度已经非常完整了。当进行一个重要指标分析的时候,我们只需要从 HBase 里面拿数据就可以了。对于业务不是非常重的指标可以直接通过 Phoenix 或者 HBase、Impala 和 Trafodion 对接业务需求,把想要的结果输出。

再往后发展,如果业务还是异常繁重,数据处理不过来,我们就可以把明细数据层 HBase 里面的数据拿出来,放到 Spark 和 Flink 这两个流计算框架中进行预聚合,然后对接到 OLTP 系统,提供后台服务。

可见,大数据技术栈的选择并没有统一的标准,不同业务场景需要不同的处理方式。正如刘景泽所说:“在很多场景里面,我们面对框架的时候要一以贯之,发现它真正的自由度在哪里?而不要被它们所局限了。

存储计算分离与数据抽象实践

大数据诞生的初期,很多公司的大数据集群是由一个庞大的 Cluster 阵列组成,里面包括很多台服务器,也就是集群的计算能力和存储能力分布在一个数据中心。这是由于当时的网络条件较差,导致任务处理中的数据传输开销非常大,而本地磁盘比网络传输更快,因此当时的主要理念就是要以数据为中心做计算,为的是减少数据的迁移,提高计算效率,这里最典型的代表就是 MapReduce。


实际上,这种” 资源池” 方案不能同时充分利用存储和计算资源,造成了大量浪费,还面临着各种组件升级困难、无法区别对待不同数据、定位问题困难、临时调配资源困难等一系列问题。随着网络速度的大幅提升、内存和磁盘的大规模扩容、大数据软件的迭代更新,之前的存储 + 计算集群的方案该如何改进呢?BLUECITY 大数据总监刘宝亮提出了存储计算分离架构,如下图所示:

ZB级的大数据探索与应用实践「附PPT」

要实现存储计算分离,首先存储计算要分开,同时存储内部要分离,计算内部也要分离。存储集群是该架构的核心,因为大数据最重要的就是数据;计算集群是这个架构的灵魂,因为一切的灵活性都是由计算集群带来的。此外,无阻塞网络是此架构最重要的依赖,因为一旦出现网络问题,存储集群的读取和写入操作就不能持平。

说到存储计算分离的优点,刘宝亮特别强调了 “弹性”,这是由于多集群的软硬件升级更容易、数据可分级对待、可临时创建新集群应对紧急问题等等都更加灵活,从而进一步提升了计算速度。

数据驱动 —— 从方法到实践

所谓数据驱动,就是通过各种技术手段采集海量数据,并进行汇总形成信息,之后对相关的信息进行整合分析并形成决策指导。在这里神策联合创始人 & 首席架构师付力力将整个数据驱动的环节总结为四步,分别是数据采集、数据建模、数据分析、数据反馈,并且这四个环节要形成闭环,也就是数据反馈最终要回归到数据采集。


数据采集是一切数据应用的根基,可以通过客户端、业务端、第三方数据、线下数据四个方面进行采集,无论以何种方式进行,建议在内部做技术架构设计的时候,要设定统一的数据接入 API,通过 SDK 或服务端的数据采集工具将数据做统一处理接收,方便后续的数据建模。

ZB级的大数据探索与应用实践「附PPT」

第二步是数据建模,一个基础的数据模型分为三部分:事件、用户、实体,在此之上,还可以做用户分群,例如根据用户的年龄、性别、省份、手机设备等属性进行划分。数据建模的过程中有一个难点就是 ETL,在多数据源采集的情况下,很难找到直接可用的 ETL 产品,因此我们可以搭建好调度、计算框架、质量管理和元数据管理等通用工作,尽量把数据的源头建设好,从而降低运营成本。

第三步数据分析,这里有两种非常典型的思路:一种是通过例行的报表满足基本的指标获取需求,如果是临时性的需求就要通过新的开发解决;另一种是使用抽象的模型覆盖指标体系以及大部分分析需求,通过友好的交互让需要数据的人自主获取数据。后者的灵活性远远大于前者,而数据分析对灵活性的要求会远大于对响应时间的要求。除此之外,数据的可解释性以及整体架构的简洁性也是非常重要的考量因素。

数字时代业务风控的挑战与机遇

企业的业务、营销、生态、数据等正面临日益严重的黑产威胁,面对黑产链条完备、分工明确的形势,现有的风控方案面临着哪些挑战?

ZB级的大数据探索与应用实践「附PPT」

数美科技 CTO 梁堃归纳了三点:第一,防御能力单薄,依赖黑名单、依赖简单人工规则、单点防御(SDK、验证码);第二,防御时效性差,依赖 T+1 离线挖掘、策略生效周期长;第三,防御进化慢,缺乏策略迭代闭环、无自学习机制。那么如何改善以上这些问题并建立完整的风控体系呢?

梁堃认为一个全栈式风控体系应该包括布控体系、策略体系、画像体系和运营体系。在布控体系上,我们可以增加设备风险 SDK、增加登录注册保护、 提供业务行为保护。在策略体系上,可以对虚拟机设备农场等风险设备、对机器注册撞库攻击等风险操作、对欺诈团伙高危群体进行识别检测等。画像体系可以在多个场景进行数据打通,多行业联防联控,共同对抗黑产。运营体系可通过案例分析、攻防研究、策略的设计、研发、验证、上线、运营等环节形成完整的闭环进行运转,这样才能保证风控一直有效。

这些体系跑在什么样的架构上呢?首先风控系统要跟业务系统解耦,这样业务规则随时升级变化不会影响风控,风控规则的变化不会影响业务。另外一个风控平台结构需要包括多场景策略体系、实时风控平台和风险画像网络,如下图所示:

ZB级的大数据探索与应用实践「附PPT」

最后,这整个风控平台的架构是运行在云服务基础设施上的 7 个全球服务集群,每日请求量达 30 亿,峰值 QPS 高达 10 万 +。该架构可分为接入层、策略引擎层、模型引擎层和存储层,通过负载均衡管理每一层的节点,实现动态的横向扩展。

Spark 在 MobTech 应用实操分享

MobTech 作为全球领先的数据智能科技平台,目前累计覆盖设备量有 120 亿,服务开发者 32 万,累计接入 APP 数量达 50 万,庞大的数据量也给 MobTech 带来了诸多挑战,例如运行的 Yarn/Spark 任务多、数据体量大、资源开销大、运算时间较长等。


在 Mob 有大量复杂的任务,业务需求促使其将部分慢任务、Hive 任务迁移到 Spark 上面,取得性能的提升,同时还对一些 Spark 任务进行优化。MobTech 大数据技术架构师张峻滔围绕复杂的 Spark 使用分享了两个案例:第一个是 Spark 动态裁减在 MobTech 的应用。

所谓动态分区裁剪,就是基于运行时(run time)推断出来的信息来进一步进行分区裁剪。假设 A 表有 20 亿数据,B 表有 1000 万数据,然后把 A 表和 B 表 join 起来,怎么才能过滤掉 A 表中无用的数据,这里我们引入了 bloomfilter。它的主要特性就是节省空间,如果 bloomfilter 判断 key 不存在,那么就一定不存在;如果 bloomfilter 判断 key 存在,那么可能存在,也可能不存在。简而言之,这是一种牺牲精度来换取空间的数据结构。Bloomfilter 在 MobTech 具体应用实现如下图所示:

ZB级的大数据探索与应用实践「附PPT」

其逻辑 SQL 如下:

SELECT /*+ bloomfilter(b.id) */ a.*,b.*FROM a join b on a.id = b.id

第二个案例是 Spark 在千亿级别数据上的检索与计算。MobTech 有 4000 多个标签需要历史回溯,且回溯时间周期长达 2 年,回溯频次很低,面对这样的冷数据,如何在资源开销比较小的情况下完成业务检索要求?由于数据分布太散,4000 多标签分布在各个不同的表里面 (横向), 历史数据又分布在日表里面 (纵向), 间接造成搜索要在千亿的数据中进行查找。这里,建立索引的思路有两个:

  • 横向数据整合:将 4000 多个标签的日数据索引整合到一个表里面;
  • 纵向数据整合:将日数据进行周级别 / 月级别整合。


横向整合的日表数据还是太大,于是决定将日期和数据 ID 整合做出一个索引表,来加快日表的查询,确保能直接通过 ID 定位到具体在事实表中的哪个文件,哪一行有该 ID 的信息。日表的数据通过 Spark RDD 的 API 获取 ID,ORC 文件名,行号的信息,生成增量索引;增量索引通过 UDAF 合并入全量索引。具体方案如下:

ZB级的大数据探索与应用实践「附PPT」

ZB级的大数据探索与应用实践「附PPT」

由于篇幅有限,更多精彩技术内容敬请关注 “UCloud 技术” 并回复 “大数据” 即可获取讲师 PPT~

ZB级的大数据探索与应用实践「附PPT」

2016-11-23 21:21:44 karamos 阅读数 196
  • BDTC2015大会精彩演讲PPT集锦

    中国大数据技术大会(Big Data Technology Conference,BDTC)是目前国内具影响、规模大的大数据领域的技术盛会。大会的前身是Hadoop中国云计算大会(Hadoop in China,HiC)。从2007年仅60人参加的技术沙龙到当下数千人技术盛宴,作为极具实战价值的专业交流平台,已经成功举办8届的中国大数据技术大会见证了中国大数据生态系统的建立、发展和演变。

    17107 人正在学习 去看看 CSDN

2016年12月8—10日,BDTC 2016中国大数据技术大会将在北京新云南皇冠假日酒店隆重举办。回顾以往九届的技术盛宴,CSDN特整理部分PPT精粹,分两期进行分享,一起回忆那些年曾经带动企业发展的技术热点和实战经验。

从2008年60人规模的“Hadoop in China”技术沙龙,到当下数千人规模的行业技术盛宴,九届BDTC(大数据技术大会)完整地见证了中国大数据技术与应用的变革,忠实地描绘了大数据领域内的技术热点,沉淀了无数极具价值的行业实战经验。同时,2016年12月8至10日,BDTC 2016中国大数据技术大会将一如既往的引领当前领域内的技术热点,分享行业实战经验。

为了更好地洞悉行业发展趋势,了解企业技术挑战,在BDTC 2016召开前夕,我们将带大家一起对历届大会沉淀的知识进行挖掘,分享各IT巨头在大数据领域的探索之路。

大数据为企业的发展带来巨大商机的同时,也对大数据的架构提出了严峻的挑战,这里将为大家送上历届中国大数据技术大会PPT精粹的大数据架构与系统篇(国外篇)。

Databricks公司联合创始人、Spark首席架构师辛湜:Spark发展,回顾2015,展望2016

PPT下载——2015第九届BDTC

图片描述

Databricks公司联合创始人、Spark首席架构师辛湜

Databricks公司联合创始人、Spark首席架构师辛湜带来主题为《Spark发展 :回顾2015,展望2016》的演讲,他介绍了Spark的目标是“Unified engine across data workloads and platforms”。在谈到Spark在2015年最大的改变时,他感觉应该是增加了DataFrames API。对于Spark的生态圈,他表示主要侧重三个不同的方向,一个是上层的应用,二是下层的环境,还有最重要的是连接到的数据源。

Hortonworks资深工程师、Apache HBase核心贡献者Ted Yu:HBase 1.0及2.0的最新进展

PPT下载——2014年第八届BDTC

图片描述
Ted Yu介绍HBase1.0和2.0的最新研发进展,主要包括HBase1.0、HydraBase、Phoenix二级索引及Per column family flush的变化。据他介绍,HBase1.0的重大变化包括稳定性、可用性、易用性等方面的提升,如Master 嵌入RegionServer。而HydraBase则提供99.99%或者更高的可用性,当一个集群宕掉以后,能以秒级恢复,并且做到不丢失数据,但采用的是不同的方式。

Facebook数据基础构架团队软件工程师董思颖:Facebook开发HDFS和HBase新进展

PPT下载——2012年第六届BDTC

图片描述
董思颖详细介绍了Facebook的NameNode和DataNode之间如何来实现数据增量,他以“人口普查-出生报告-死亡报告”来形象地描绘二者之间“完全报告+增量”的过程。而针对困扰业内的“如何实现NameNode不停机升级”这一问题,提供了Facebook的实现方法。在Facebook看来,HDFS和HBase是一个非常重要的基础设施,可以被用在各种不同的产品上,对于两者的使用,Facebook从数据库到实时随机读写再到实时连续读写都有很多更新,这个更新成长的过程很漫长,但是Facebook持续进行各种改进,来帮助HDFC成为一个更通用、更稳定的数据平台。

Intel大数据首席架构师戴金权:基于Spark软件栈的大数据分析

PPT下载——2014年第八届BDTC

图片描述
戴金权表示,大数据深入分析大致分为两类:类似SQL数据分析,进行关系型云运算;达到实时、快速的数据分析速度。他认为,利用Spark构建下一代大数据分析,能够为用户构建新的应用场景及新的分析应用。并举例说明Spark与SQL结构式数据结合的方式,对Hive和Parquat进行数据处理。

LinkedIn Hadoop核心团队俞晨杰:LinkedIn大数据应用和Azkaban

PPT下载 ——2013年第七届BDTC

图片描述
俞晨杰首先介绍了LinkedIn在Hadoop平台上的大数据应用,包括其数据产品和推荐平台等;然后介绍了其工作流调度平台Azkaban,详细说明了他们如何设计Azkaban来满足大数据产品及工程师设计的要求。俞晨杰表示,Azkaban最大的特色是非常强调可视化,这对于提高公司生产力是十分关键的。另外,他还提出,Azkaban的另外一个特色是支持各种各样的大数据平台,有非常好的兼容性,包括支持Hadoop 0.20、1.x和2.x;兼容Hadoop多种配置,如Hadoop security;支持Pig、Hive等SQL引擎的新旧版本兼容;最后还支持一些非Hadoop平台,如Teradata。

沃尔玛实验室核心数据科学家Zhu Tao:电子商务中的“纳米技术”

PPT下载——2014年第八届BDTC

图片描述
Zhu Tao认为,大数据在电子商务中的定义是指在每一个用户下面管理商务。正如纳米技术关注尺度很小的材料,沃尔玛电商大数据主要希望观察到每一个用户,每一个产品如何从沃尔玛流向每一个用户的,进而实现更加智慧更加优秀的用户体验。演讲期间,Zhu Tao对沃尔玛实验室的打包推荐技术进行了详细的剖析。


更多详细请查看中国大数据技术大会(BDTC)官网:http://bdtc2016.hadooper.cn


2016中国大数据技术大会(BDTC):130+位讲师,16大分论坛,中国科学院院士陈润生,美国伊利诺伊大学香槟分校(UIUC)计算机系教授翟成祥,驭势科技联合创始人、CEO吴甘沙,上交所前总工程师白硕,日本国家信息研究所所长喜连川优,百度金融研发负责人沈抖等专家将亲临2016中国大数据技术大会。【抢票】

图片描述

2015-04-22 09:59:48 chengying332 阅读数 872
  • BDTC2015大会精彩演讲PPT集锦

    中国大数据技术大会(Big Data Technology Conference,BDTC)是目前国内具影响、规模大的大数据领域的技术盛会。大会的前身是Hadoop中国云计算大会(Hadoop in China,HiC)。从2007年仅60人参加的技术沙龙到当下数千人技术盛宴,作为极具实战价值的专业交流平台,已经成功举办8届的中国大数据技术大会见证了中国大数据生态系统的建立、发展和演变。

    17107 人正在学习 去看看 CSDN

2015年中国数据库技术大会(DTCC)PPT合集


由国内领先的IT专业网站IT168联合旗下ITPUB、ChinaUnix两大技术社区举办的2015第六届中国数据库技术大会(DTCC2015)在北京新云南皇冠假日酒店圆满举办,本届大会将继续秉承分享IT最佳应用实践的宗旨,围绕传统数据库和大数据两条技术主线,在目前IT技术和管理快速的大背景下,更加深入地探讨数据库技术的现状和未来的发展方向,以及我们在这个转型过程中的实践经验和教训。大会共三天,共两个主场,20个专场的分享,IT168文库独家首发本届大会PPT完整版。


详细解读 和小伙伴们一起来吐槽

没有更多推荐了,返回首页