2019-09-06 17:07:06 w953530843 阅读数 258

场景切换,例:主界面副本面板切换到副本场景,副本场景点击返回,回到主页面.

使用场景切换,首先引入命名空间:using UnityEngine.SceneManagement;

使用前提需要将 场景加载到文件-生成位置 File - Build Settings

将场景全部拖拽到 Scenes in build

同步加载:
在这里插入图片描述

异步加载:
首先同样引入命名空间等操作同上

在这里插入图片描述

2017-04-10 20:30:03 Mogoson 阅读数 1769

Cubemap Renderer

概述

Unity Cubemap渲染器

问题

  • 有时,发现一些Unity资源包中的场景的环境效果不错,希望将其渲染成Cubemap供天空盒使用。
  • Unity场景中需要制作一些反射效果的材质,例如玻璃,金属等,需要将场景渲染成Cubemap,
    结合反射Shader表现效果。

条件

  • Unity提供ScriptableWizard类快速创建简易扩展编辑器窗口。
  • Unity提供Camera.RenderToCubemap方法渲染Cubemap。

方案

  • 编写扩展编辑器窗口,指定目标渲染摄像机(渲染细节调节摄像机参数即可)。
  • 选择保存路径,输入文件名,渲染场景到Cubemap文件。

实现

  • CubemapRenderer.cs 绘制扩展编辑器窗口,渲染场景到Cubemap中。

源码

2015-11-23 10:19:54 qinyuanpei 阅读数 24169
版权声明:本文由秦元培创作和发表,采用署名(BY)-非商业性使用(NC)-相同方式共享(SA)国际许可协议进行许可,转载请注明作者及出处,本文作者为秦元培,本文标题为解析OBJ模型并将其加载到Unity3D场景中,本文链接为http://qinyuanpei.com/2015/11/15/deep-learning-of-3d-model-file-format-of-obj/.

  各位朋友,大家好,欢迎大家关注我的博客,我是秦元培,我的博客地址是http://qinyuanpei.com。今天想和大家交流的是解析obj模型并将其加载到Unity3D场景中,虽然我们知道Unity3D是可以直接导入OBJ模型的,可是有时候我们并不能保证我们目标客户知道如何使用Unity3D的这套制作流程,可能对方最终提供给我们的就是一个模型文件而已,所以这个在这里做这个尝试想想还是蛮有趣的呢,既然如此,我们就选择在所有3D模型格式中最为简单的OBJ模型来一起探讨这个问题吧!

关于OBJ模型

  OBJ格式是一种3D模型文件格式,是由Alias|Wavefront公司为3D建模和动画软件 “Advanced Visualizer”开发的一种标准,适合用于3D软件模型之间的互相转换。和FBX、Max这种内部私有格式不同,OBJ模型文件是一种文本文件,我们可以直接使用记事本等软件打开进行编辑和查看,因此我们这里选择OBJ模型主要是基于它开放和标准这两个特点。需要说明的是,OBJ文件是一种3D模型文件,它主要支持多边形模型(三个点以上的面)。OBJ模型支持法线和贴图坐标,可是因为它本身并不记录动画、材质特性、贴图路径、动力学及粒子等信息,所以我们在游戏开发中基本看不到这种模型格式的,所以我们这里做下简单研究就好。

OBJ模型解读

  因为OBJ模型文件是一个文本文件,所以我们可以使用记事本等软件打开它来对它的文件结构进行下了解。首先OBJ文件没有头文件,如果你曾经尝试解析过mp3文件的ID3v1/ID3v2标签就应该知道它是根据mp3文件的开头或者末尾的若干字节来判断这些标签信息的,而在OBJ文件中是没有类似这样的头文件的。OBJ文件是由一行行由关键字、空格和文本字符组成的文本文件,通过关键字我们就可以知道这一行的文本表示的是什么数据。例如:

# Blender v2.76 (sub 0) OBJ File: ''

#关键字表示一个注释行,通过这个注释信息我们可以知道这个OBJ模型是由Blender2.76版本导出的。再比如:

mtllib liumengli.mtl

mtllib关键字则表示当前模型对应的材质库(.mtl)文件名称,每个OBJ模型文件都会有这样一个对应和它同名的.mtl文件,在这个文件中记录了材质相关的信息,稍后我们说到材质的时候会详细说说这个文件的格式,因为它和OBJ文件一样是一个文件文件。再比如:

usemtl Material__33

usemtl关键字则表示从当前行到下一个usemtl关键字所在行间的全部网格结构都使用其对应的材质,通过这个材质名称我们可以在.obj文件对应的.mtl文件中找到它的材质定义,这个我们在讲到材质部分的时候会详细说。

  好了,目前我们要做的工作室解析.obj文件然后创建网格进而可以使其显示在Unity3D场景中,在这里我们要重点关注的关键字有:
* v即Vertex,表示一个顶点的局部坐标系中的坐标,通常有三个分量,因为这里讨论的是三角面。例如:

v  1.5202 14.9252 -1.1004
  • vn即Vertex Normal,表示法线,注意到这些向量都是单位向量,所以我们可以认为三维软件在导出模型的时候已经做好了相关的标准化工作。
vn 0.8361 -0.0976 0.5399
  • vt即Vertex Texture,表示纹理坐标,就是我们熟悉的UV坐标啦,显然UV是个2D坐标,有两个分量。
vt -0.5623 0.4822 1.0000
  • f即face,这是一个真正描述面的关键字,通常它后面有三个索引结构,每个索引结构由顶点索引、法线索引和纹理坐标索引三部分构成。例如:
f 256/303/637 257/304/638 258/305/639 

以上这些关键字对我们解析.obj文件来说已经完全足够了,如果大家想对这些细节有更为深入的了解,可以参考这里这里

OBJ模型的读取

  OBJ模型的读取涉及到网格部分的读取和材质部分的读取两个部分,其中网格部分的读取难点在于当模型存在多个材质的时候,需要将模型分为若干个子物体,然后分别为这些子物体添加材质。可是不幸的是到目前为止,博主并没有找到一种行之有效的方法来对这些网格进行分类,所以这里我们假定模型是一个整体且共享同一种材质和一张贴图。如果大家找到了更好的解决方案,请记得告诉我,再次谢谢大家!

网格部分

  在网格读取这部分,因为我们已经假设所有的面构成一个物体,因此我们可以先将OBJ文件内的文本按照换行符来进行分割,然后再按照关键字去判断每一行的数据类型并进行相应的处理就可以了。读取OBJ模型的基本流程是:
* 读取顶点、法线、UV以及三角面
* 将三角面合并为四边面
* 根据索引重新计算顶点、法线、UV数组

读取顶点、法线、UV以及三角面

  首先我们来看第一步的代码实现:

/// <summary>
/// 从一个文本化后的.obj文件中加载模型
/// </summary>
public ObjMesh LoadFromObj(string objText)
{
    if(objText.Length <= 0) 
        return null;
    //v这一行前面是两个空格后面是一个空格
    objText=objText.Replace("  ", " ");

    //将文本化后的obj文件内容按行分割
    string[] allLines = objText.Split('\n');
    foreach(string line in allLines)
    {
        //将每一行按空格分割
        string[] chars = line.Split(' ');
        //根据第一个字符来判断数据的类型
        switch(chars[0])
        {
             case "v":
             //处理顶点
             this.vertexArrayList.Add(new Vector3(
                ConvertToFloat(chars[1]), 
                ConvertToFloat(chars[2]),
                ConvertToFloat(chars[3]))
                );
                break;
             case "vn":
             //处理法线
             this.normalArrayList.Add(new Vector3(
                ConvertToFloat(chars[1]), 
                ConvertToFloat(chars[2]), 
                ConvertToFloat(chars[3]))
                );
              break;
              case "vt":
              //处理UV
              this.uvArrayList.Add(new Vector3(
                ConvertToFloat(chars[1]),
                ConvertToFloat(chars[2]))
                );
                break;
              case "f":
              //处理面
              GetTriangleList(chars);
                break;
       }
 }

在这段代码中,我们首先将文本化的.obj文件按照换行符分割成字符串数组allLines,然后再对每一行按照空格分隔成字符串数组chars,这样我们就可以通过该数组的第一个元素chars[0]来判断当前行中的数据类型。这样我们将每一行的文本读取完后,所有的数据都被存储到了其相对应的列表中。其中,vertexArrayList存储顶点信息、normalArrayList存储法线信息、uvArrayList存储UV坐标。至此,我们完成第一部分中的顶点、法线和UV的读取。

  这里可以注意到我们在开始对文本化的.obj文件的内容有1次替换操作,这是因为在3dsMax中导出的.obj文件关键字v这一行中v后面的第一处空格位置是有2个空格,而我们在处理的时候是按照空格来分割每一行的内容的,这样chars[1]就会变成一个空字符串,显然这不符合我们的初衷,所以这里就需要对字符串进行这样一个操作,希望大家在解析的过程中注意,好吧,我承认我想吐槽3dsMax了,我不明白同一家公司的3dsMax和Maya为什么不能互相转换,我不明白3dsMax导出.obj文件的时候要做这样奇葩的设定,我更不明白为什么有开源、免费、轻巧的Blender都不去用非要每次都去安装容量动辄上G的盗版软件和不知道会不会变成下一个GhostXXXX的注册机,我更加不能容忍的是封闭的FBX格式和用起来就如同自虐的FBX SDK。

  好了,吐槽结束,我们接下来来看看三角面是如何读取的。三角面的读取定义在GetTriangleList()方法中,因此三角面的读取实际上首先需要将每一行文本按照空格进行分割,然后再将每一个元素按照/分割,这样就可以依次得到顶点索引、法线索引和UV索引。在某些情况下法线索引可能不存在,所以在处理的过程中需要对其进行处理。

/// <summary>
/// 获取面列表.
/// </summary>
/// <param name="chars">Chars.</param>
private void GetTriangleList(string[] chars)
{
   List<Vector3> indexVectorList = new List<Vector3>();
   List<Vector3> triangleList = new List<Vector3>();

   for(int i = 1; i < chars.Length;++i )
   {
       //将每一行按照空格分割后从第一个元素开始
       //按照/继续分割可依次获得顶点索引、法线索引和UV索引
       string[] indexs = chars[i].Split('/');
       Vector3 indexVector = new Vector3(0, 0);
       //顶点索引
       indexVector.x = ConvertToInt(indexs[0]);
       //法线索引
       if(indexs.Length > 1){
          if(indexs[1] != "")
             indexVector.y = ConvertToInt(indexs[1]);
       }
       //UV索引
       if(indexs.Length > 2){
          if(indexs[2] != "")
              indexVector.z = ConvertToInt(indexs[2]);
       }

       //将索引向量加入列表中
       indexVectorList.Add(indexVector);
   }

   //这里需要研究研究
   for(int j = 1; j < indexVectorList.Count - 1; ++j)
   {
       //按照0,1,2这样的方式来组成面
       triangleList.Add(indexVectorList[0]);
       triangleList.Add(indexVectorList[j]);
       triangleList.Add(indexVectorList[j + 1]);
   }

   //添加到索引列表
   foreach(Vector3 item in triangleList)
   {
      faceVertexNormalUV.Add(item);
   }
}

在这里,我们首先使用一个索引向量列表indexVectorList存储每一行的索引向量。这里的索引向量是指由顶点索引、法线索引和UV索引分别构成Vector3的三个分量,这样做的好处是我们可以节省重新去定义数据机构的时间。好了,我们把所有的索引向量读取完后,按照0、1、2这样的方式组成三角面,这里可能是.obj文件本身定义的一种方式,我们暂且按照这样的方式来处理。最后,全部的三角面会被读取到faceVertexNormalUV列表中,它表示的是每个三角面的顶点、法线和UV的索引向量,是一个List类型的变量。

将三角面合并为四边面

  现在我们读取到的是三角面,接下来我们需要将它们合并成四边面,合并的原理是判断它们是否在同一个面上。如果两个点的顶点索引相同则表明它们是同一个点,如果两个点的法线索引相同则表明它们在同一个面上。好了,我们来看定义的一个方法Combine():

/// <summary>
/// 合并三角面
/// </summary>
private void Combine()
{
   //使用一个字典来存储要合并的索引信息
   Dictionary<int, ArrayList> toCambineList = new Dictionary<int,ArrayList>();
   for(int i = 0; i < faceVertexNormalUV.Count; i++)
   {
       if(faceVertexNormalUV[i] != Vector3.zero)
       {
           //相同索引的列表
           ArrayList SameIndexList = new ArrayList();
           SameIndexList.Add(i);
           for(int j = 0; j < faceVertexNormalUV.Count; j++)
           {
               if(faceVertexNormalUV[j]!=Vector3.zero)
               {
                  if(i != j)
                  {
                     //如果顶点索引和法线索引相同,说明它们在一个面上
                     Vector3 iTemp = (Vector3)faceVertexNormalUV[i];
                     Vector3 jTemp = (Vector3)faceVertexNormalUV[j];
                     if(iTemp.x == jTemp.x && iTemp.y == jTemp.y)
                     {
                        //将索引相同索引列表然后将其重置为零向量
                        //PS:这是个危险的地方,如果某个索引信息为Vector3.Zero
                        //就会被忽略过去,可是貌似到目前为止没有发现为Vector3.Zero的情况
                        SameIndexList.Add(j);
                        faceVertexNormalUV[j]=Vector3.zero;
                     }
                   }
               }
           }
           //用一个索引来作为字典的键名,这样它可以代替对应列表内所有索引
           toCambineList.Add(i, SameIndexList);
       }
    }
 }

在这里我们使用了一个字典来存储合并后的四边面,这个字典的键名为这一组三角面共同的索引,因为大家都是用同一个索引,因此它可以代替那些被合并的三角面的索引,这样合并以后的四边面列表中元素的个数就是实际的网格中的面数个数,因为如果采用三角面的话,这个面数会比现在的面数还要多,这意味着这样会带来更多的性能上的消耗。这里可能不大好理解,大家可以将博主这里的表达方式换成自己能够理解的方式。佛曰不可说,遇到这种博主自己都说不明白的地方,博主就只能请大家多多担待了。好了,接下来要做的是重新计算顶点、法线和UV数组。可能大家会比较疑惑,这部分内容我们在第一步不是就已经读取出来了嘛,怎么这里又要重新计算了呢?哈哈,且听我慢慢道来!

根据索引重新计算顶点、法线、UV数组

  虽然我们在第一步就读取到了这些坐标数据,可是当我们合并三角面以后,就会出现大量的无用的点,为什么无用呢,因为它被合并到四边面里了,这样我们原来读取的这些坐标数据就变得不适用了。那怎么办呢?在第三步中我们合并四边面的时候已经用一个字典保存了合并后的索引信息,这就相当于我们已经知道哪些是合并前的索引,哪些是合并后的索引,这个时候我们只要根据索引重新为数组赋值即可:

//初始化各个数组
this.VertexArray = new Vector3[toCambineList.Count];
this.UVArray = new Vector2[toCambineList.Count];
this.NormalArray = new Vector3[toCambineList.Count];
this.TriangleArray = new int[faceVertexNormalUV.Count];

//定义遍历字典的计数器
int count = 0;

//遍历词典
foreach(KeyValuePair<int,ArrayList> IndexTtem in toCambineList)
{
    //根据索引给面数组赋值
    foreach(int item in IndexTtem.Value)
    {
        TriangleArray[item] = count;
    }

    //当前的顶点、UV、法线索引信息
    Vector3 VectorTemp = (Vector3)faceVertexNormalUV[IndexTtem.Key];

    //给顶点数组赋值
    VertexArray[count] = (Vector3)vertexArrayList[(int)VectorTemp.x - 1];

    //给UV数组赋值
    if(uvArrayList.Count > 0)
    {
       Vector3 tVec =(Vector3)uvArrayList[(int)VectorTemp.y - 1];
       UVArray[count] = new Vector2(tVec.x, tVec.y);
    }

            //给法线数组赋值
            if(normalArrayList.Count > 0)
            {
                NormalArray[count] = (Vector3)normalArrayList[(int)VectorTemp.z - 1];
            }

            count++;
        }

这样我们就读取到了合并后的坐标信息,通过顶点、法线、UV、面等信息我们现在就可以生成网格了。这部分我们暂且不着急,因为这基本上属于最后整合到Unity3D中步骤了。好了,为了方便大家理解,我已经完整的项目上传到Github,大家可以通过这里了解完整的项目。

材质部分

  材质这块儿的解析主要集中在.mtl文件中,和.obj文件类似,它同样是一个文本文件、同样采用关键字、空格、文本字符这样的结构来表示数据,因此我们可以借鉴.obj文件的读取。例如:

newmtl Material

newmtl关键字表示从当前行到下一个newmtl关键字所在行间都表示该关键字所对应的材质,这里的Material即表示材质的名称,它和.obj文件中的usemtl关键字相对应,因此我们给模型添加材质的过程本质上是从.obj文件中读取网格,然后找到其对应的材质名称,然后在.mtl文件中找到对应的材质定义,并根据定义来生成材质。目前已知的关键字有:

Ka 0.5880 0.5880 0.5880

Ka关键字表示环境反射的RGB数值。

Kd 0.640000 0.640000 0.640000

Kd关键字表示漫反射的RGB数值。

Ks 0.500000 0.500000 0.500000

Ks关键字表示镜面反射的RGB数值。

map_Ka E:\学习资料\Unity3D技术\Unity3D素材\柳梦璃\Texture\1df2eaa0.dds

map_Ka关键字表示环境反射的纹理贴图,注意到这里使用的是绝对路径,显然我们在读取模型的时候不会将贴图放在这样一个固定的路径,因此我们这里初步的想法读取贴图的文件名而非贴图的完整路径,考虑到我们在Unity3D中一般使用PNG格式的贴图,因此这里需要对路径进行处理。

map_Kd E:\学习资料\Unity3D技术\Unity3D素材\柳梦璃\Texture\1df2eaa0.dds

map_Kd关键字表示漫反射的纹理贴图,和环境反射的纹理贴图是类似地,这里就不再说了。此外还有其它的关键字,初步可以推断出的结论是它和3dsMax中材质编辑器里的定义特别地相似,感兴趣的朋友可以进一步去研究。可是现在就有一个新的问题了,怎样将这些参数和Unity3D里的材质关联起来呢?我们知道Unity3D里的材质是是由着色器和贴图两部分组成的,博主对Shader并不是很熟悉,因此这里确实有些说不清楚了。博主感觉对OBJ文件来说,其实使用Diffuse就完全足够了,所以这里对材质部分的研究我们点到为止,不打算做代码上的实现。如果不考虑这些参数的话,我们要做的就是通过WWW或者Resource将贴图加载进来,然后赋值给我们通过代码创建的Shader即可。而对于.obj文件来说,无论是通过Resource、WWW或者是IO流,只要我们拿到了这个文件中的内容就可以使用本文中的方式加载进来,因为我们假定的是读取只有一种材质的模型。有朋友可能要问,那如果有多种材质怎么办呢?答案是在.mtl问价中获取到所有贴图的名称,然后再到程序指定的路径去读取贴图,分别为其创建不同的材质,可是这些材质要怎么附加到它对应的物体上呢?这个目前博主没有找到解决的方法,所以此事暂且作罢吧!

在Unity3D中加载obj模型

  下面我们以一个简单的例子来展示今天研究的成果,我们将从.obj文件中读取出一个简单的模型并将其加载到场景中。好了,我们一起来看代码:

if(!File.Exists("D:\\cube.obj"))
    Debug.Log("请确认obj模型文件是否存在!");

StreamReader reader = new StreamReader("D:\\cube.obj",Encoding.Default);
string content = reader.ReadToEnd();
reader.Close();

ObjMesh objInstace = new ObjMesh();
objInstace = objInstace.LoadFromObj(content);

Mesh mesh = new Mesh();
mesh.vertices = objInstace.VertexArray;
mesh.triangles = objInstace.TriangleArray;
if(objInstace.UVArray.Length > 0)
    mesh.uv = objInstace.UVArray;
if(objInstace.NormalArray.Length>0)
    mesh.normals = objInstace.NormalArray;
mesh.RecalculateBounds();

GameObject go = new GameObject();
MeshFilter meshFilter = go.AddComponent<MeshFilter>();
meshFilter.mesh = mesh;

MeshRenderer meshRenderer = go.AddComponent<MeshRenderer>();

这里没有处理材质,所以读取出来就是这个样子的,哈哈!

最终效果,这是一个悲伤的故事

材质大家可以尝试用代码去创建一个材质,然后在给一张贴图,这个玩玩就好,哈哈!好了,今天的内容就是这样子了,希望大家喜欢,为了写这篇文章我都怀疑我是不是有拖延症啊!

2012-11-29 18:03:20 yanghuiliu 阅读数 15409
猴子原创,欢迎转载。转载请注明: 转载自Cocos2D开发网--Cocos2Dev.com,谢谢!

原文地址: http://www.cocos2dev.com/?p=339


导入的场景文件,发现人物会穿墙,也就是场景没有碰撞。


那么如何添加mesh之间的碰撞呢?最后发现挺简单的。

 

1、在Project中选中你的场景模型

2、在Inspector中勾选 Generate Colliders

3、Apply即可生成模型的mesh collider



2017-09-02 12:04:48 dongkaixuan 阅读数 5019

第一章Unity环境搭建

所用软件:Unity 5.4.0f3 (64-bit)

assets文件夹最重要

Scene场景面板        

常用快捷键

1.按下鼠标滚轮拖动场景(或者拖动小手),滑动滚轮缩放场景

2.选择十字标,选定物体,按下F:居中,ALT+鼠标左键:围绕旋转 ALT+鼠标右键:缩放=滑动滚轮

3.右键加ASDWQE场景漫游 

4.按下十字标,选定物体,拖动轴:往前走=向着Z轴正方向,向右走=X轴正方向,向上走=Y轴正方向:反之负方向。拖动面:沿面移动。

5.按下双曲箭头标,是按轴旋转。

6.按下方框和四个箭头的标,是放大缩小,拖动中间白色小方框是整体按比例放大缩小。

inspector:检视面板(检查监视)显示的属性可能不准,在右上角static上边的小三杠选择Debug可以查看隐藏属性,在里面找到要修改的属性的真正名称

transform 变换组件   reset 重置

Position :位置 X 0 Y 0 Z 0     unity世界原点

Rotation :角度X 0 Y 0 Z 0     角度同世界一致

Scale:    比例 (一般X 1   Y 1   Z 1)

unity世界物体都是由小三角组成,物体越细腻小三角越多。

顶点吸附:按下V同时按下左键拖动,实现顶点吸附

视觉停留效应:0.02S以内视觉感受不到更新

2D视角:ISO正交模式3D视角:Persp 透视模式

 

基础概念

坐标

世界坐标:整个场景的固定坐标,不随物体旋转而改变

本地坐标:物体自身坐标,随旋转而改变

 

场景scene

一组相关联的游戏对象的集合,通常游戏中每个关卡就是一个场景,用于展现当前关卡中的所有物体。

 

游戏对象gameobject

-运行时出现在场景中的游戏物体。-是一种容器,可以挂载组件。

组件component(例:transform版块)

-是游戏对象的功能模块

网格过滤器:过滤形状     网格渲染器:显示形状

Ctrl+S 保存场景

Ctrl+D 复制物体

为物体添加颜色等要为物体的MeshRenderer下的material添加材质,默认材质无法修改。

 

Ctrl+1  切换到scene视图 Ctrl+2切换到Game视图  Ctrl+3切换到Inspector视图 Ctrl+4切换到Hierarchy视图

 

在播放模式下,用户对游戏场景做的所有修改都是临时的,所有的修改在退出游戏预览模式后都会被还原。

 

*重要)project(项目)包含很多scene(场景),scene包含很多gameobject(游戏对象),gameobject包含很多component(组件)<开发重点>

 

打组,一般先创建一个空物体(empty),然后再创建子物体。位置角度比例都是相对父的。

 

mesh  renderer  更改渲染   初始粉紫色,名为材质丢失

metallic 金属的   albedo 反射系数

material材质:物体的质地,指色彩、纹理、光滑度、透明度、反射率、折射率、发光度等。实际就是shader(着色)的实例。简单来说是物体的外观。

 

透明要把渲染模式renderingmedo改为transparent(透明),再调albedo(反射率)里的A

渐变要把渲染模式改为fade(渐变),再调albedo里的A

去底镂空要把渲染模式改为cutout(镂空),再调albedo里的A   

      RGBA图片可使用CUTOUT去底,RGB不可以

 

shader着色器:专门用来渲染3D图形的技术,可以使纹理以某种方式展现。 

     材质相当于shader的面板,shader是程序

texture纹理:附加到物体表面的贴图。

*重要)shader-->material-->MeshRenderer(网格渲染)    meterial-->texture纹理

                   -->color

shader要借助material才能作用到物体

摄像机

天空盒skybox

围绕整个场景的包装器,用于模拟天空的材质。

 

windos-->lighting灯光-->environment lighting环境灯光(scene会受到skybox的影响)

Tag标签  layer层    作用:分类

摄像机可以选择看见哪个层或者不看见哪个层,层也可以自己添加。

 

游戏是3D还是2D需要设置摄像机的视角为透视perspective或正交orthogonality

摄像机的far是视野范围

viewport rect  : W,H调整屏幕宽和高   X,Y调整屏幕在水平竖直方向的位置。

若两个摄像机视野重叠,则depth深度值,大的盖住小的

 

选中摄像机,按Ctrl+Shift+F,可快速让摄像机定位到当前位置,并且角度同视角一致。也可以定位别的物体。(要把输入法关闭)

让摄像机跟着模型走:创建一个空物体player,然后把模型model和摄像机作为player的子物体,并且务必把模型的transform重置,同player一致。

创建小地图:在天空放置一个摄像机向下看,然后设置该摄像机深度值depth大于模型摄像机,然后设置成2D(orthogonality)

做人物标记:在人物头顶创建一个平面,然后载入三角图片。由于主摄像机不能看见三角平面标记,则给该平面设置一个层,给摄像机设置成不看见这个层。

把摄像机属性skybox更改为depth only ,则只显示摄像机看得见的,其余部分会消失。

instantOC(面试重点)

:一个插件,包括occlusionculling LOD

包括一、渲染管线,二、occlusion culling,三、LOD

一、渲染管线 

        渲染管线:图形数据在GPU上经过运算处理,最后输出到屏幕的过程

    绘制调用Draw Call:每次引擎(CPU)准备数据并通知GPU的过程。通俗讲:每帧调用显卡渲染物体的次数。(在starts里Batches后边显示的数字)

   CPU准备数据                                     顶点处理:中间有坐标系的转换

游戏-->图形API-->CPU(决定视锥以内哪些物体需要渲染à)与GPU(显卡)分界线-->顶点处理-->图元装配(连接相邻的点组成三角面)-->光栅化(计算三角面上的像素)-->像素处理(对每个像素区域进行着色)-->缓存(一个存储像素数据的内存块,最重要的是帧缓存(常在显卡中)与深度缓存z-buffer(物体距离摄像机的距离)。)

一个物体不渲染,CPU与GPU性能都会提高。物体越多、物体精度越高,CPU与GPU性能越低。

二、occlusion culling

      即时遮挡剔除occlusion culling:在物体被渲染前,将摄像机视角内看不见的物体进行剔除,从而减少了每帧渲染数据量,提高渲染性能。(笔试考)

    默认:摄像机视锥内物体都会被渲染,即使看不见也会被渲染。

插件samples:每帧摄像机发射的射线数目,数量多会导致CPU性能降低,通常在150-500之间。

FOV :视场<-->摄像机中filed of view          View视野<-->摄像机中far   

hide delay延迟隐藏:射线发射次数。建议50帧-100帧之间。  PreCull Check,建议勾选。

遮挡剔除同时,要为物体设置一个盒子碰撞器(绿色物理边界)。为物体加一个组件-->box collider

注意:不设置碰撞器射线射不到。

遮挡剔除优点:减少渲染量。  (功能上没有损失)  缺点:CPU(射线)需要消耗额外性能。

场景里物体较多且分布较密集(被遮挡的物体多)时使用遮挡剔除。

 

三、LOD

    LOD(Level of Detail多细节层次):指根据物体模型的节点在显示环境中所处的位置和重要度,决定物体渲染的资源分配,降低非重要物体的面数和细节度,从而获得高效率的渲染运算。

    不会降低draw call

优点:降低非重要物体的面数与精度,从而获得高效率的渲染运算  

   缺点:CPU总需要判断距离,变换模型

适用性:1.场景中需要存在高精度模型  2.距离需要变化

步骤:1.创建层

    2.创建空物体并将模型添加到其中,模型命名:Lod_0,Lod_1,Lod_2(精度由高到低)

    3.为父物体指定层与标签

    4.父物体或子物体添加碰撞器组件

    5.摄像机附加脚本IOCcam

Lod1 distance:摄像机到物体距离小于当前距离时,使 用Lod_0模型。

Lod2 distance:摄像机到物体距离大于Lod1且小于当前 距离时,使用Lod_1模型,大于当前值使用Lod_2模型。

 

 

光照系统

    GI(Global illumination),即全局光照。能够计算直接光、间接光、环境光(ambient)以及反射光(reflection)的光照系统。通过GI算法可以使渲染出来的光更加真是丰富。

直接光照

    直接光照directional平行光和位置无关和角度有关。point点光源相当于一个灯泡,range:范围。sport聚光灯:由一个点像一个椎体照射,相当于手电筒。

物体阴影在光源选项组件里。硬阴影性能比软阴影好。阴影很消耗性能,所以需要阴影剔除。

    shadowdistance(阴影距离):如果等于40则等于距离摄像机40米以内渲染阴影,40米以外不渲染阴影。

选中个别物体,可以在组件中选择关闭阴影

环境光照

  环境光照ambient source所有物体都能感受到的光照。

作用于场景内所有物体的光照,通过EnvironmentLighting Ambient 控制。

AmbientSource 环境光源

--Skybox 通过天空盒颜色设置环境光照

--Gradient 梯度颜色

Sky 天空颜色、Equator 地平线颜色、Ground 地面颜色

--Ambient Color 纯色

AmbientIntensity 环境光强度

AmbientGI  环境光GI模式

--Realtime实时更新,环境光源会改变选择此项。

--Backed 烘焙,环境光源不会改变选择此项。

反射光照

  反射光照resolution source从天空盒中取色。

根据天空盒或立方体贴图计算的作用于所有物体的反射效果,通过EnvironmentLighting Reflection 控制。

ReflectionSource 反射源

--Skybox 天空盒

Resolution 分辨率Compression是否压缩

--Custom 自定义

Cubemap立方体贴图

ReflectionIntensity 反射强度

ReflectionBounces 使用ReflectionProbe 后允许不同游戏对象间来回反弹的次数。

间接光照

   间接光照物体表面在接受光照后反弹出来的光。(特别消耗性能)

通过Light 组件中BounceIntensity 反弹强度控制。

可以通过Scene 面板Irradiance 模式查看间接光照。

  

注意:只有标记Lightmaping Static的物体才能产生间接光。

实时GI

一、Realtime GI 实时GI:在运行期间任意修改光源,效果实时更新。(需要预计算)

 实时GI在手游里慎用,太消耗性能。

1.把场景里不动的物体标记为Static(静态的)

2.勾选precomputed(预计算) Realtime GI  

3.调整好物体点击Build(取消勾选Auto)

烘焙GI

二、烘焙GIBaked GI将光照效果做成图片贴到物体上。

    当场景包含大量物体时,实时光照和阴影对游戏性能有很大影响。使用烘焙技术,可以将光线效果预渲染成贴图再作用到物体上模拟光影,从而提高性能。   适用于在性能较低的设备上运行程序。

    需要把不动的物体设置为静态,只烘焙不动的物体。

步骤:

1. 游戏对象设置为LightmapingStatic。
2. 设置Light组件Baking属性。
3. 启用Lighting 面板的Baked GI。
4. 点击Build按钮。(在Lightling-->Scene中)(如果勾选Auto 编辑器会自动检测场 景的改动修复光照效果)
Light 组件Baking 属性:烘焙模式
--Realtime仅实时光照时起作用。
--Baked仅烘焙时起作用。
--Mixed 混合,烘焙与实时光照都起作用。
可以通过Scene 面板Baked 模式查看光照贴图。

光源侦测

三、光源侦测

由于LightMapping只能作用于static 物体,所以导致运 动的物体与场景中的光线无法融合在一起,显得非常不真 实。而LightProbes 组件可以通过Probe(侦测)收集光影信息, 然后对运动物体邻近的几个Probe 进行插值运算,最后将 光照作用到物体上。

probe不宜太少也不宜太多,太少有光变化的地方侦测不到,太多消耗性能。在光有明暗变化的地方必须要有probe探针。 

 

声音

声音分为2D、3D两类

    3D声音:有空间感,近大远小。

    2D声音:适合背景音乐。

·          在场景中产生声音,主要依靠两个重要组件:

Audio Listener 音频监听器:接收场景中音频源Audio Source(音频源)发出的声音,通过计算机的扬声器播放声音。

Audio Source 音频源

音频监听器在摄像机组件中,场景中只能有一个音频监听器。如果有多个摄像机,那只能留一个,要把别的摄像机的音频监听器组件移除remove。

 

一般游戏里声音都放在一个sounds文件夹里面。

声音组件中要勾选playon awake (运行时播放)启用声音

3D sound settings  3D声音的设置

音量衰减linear线性曲线(常用)    X轴:单位 米。Y轴:音量

min distance :最小距离(距离之内无衰减) max distance:最大距离(超过距离就没有声音)

Unity3d场景切换

阅读数 1028

Unity3d场景合并

阅读数 11

没有更多推荐了,返回首页