2018-11-02 12:21:25 Eastmount 阅读数 5036
  • MATLAB基础知识大串讲

    Matlab基础知识大串讲,具体内容包括matlab下载安装、数据类型、矩阵操作、运算符、字符串处理、数组运算、M文件、变量、控制流、脚本与函数、图形绘制、二维图形绘制、三维图形绘制、四维图形绘制。

    33038 人正在学习 去看看 魏伟

该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~

该系列在github所有源代码:https://github.com/eastmountyxz/ImageProcessing-Python
PS:请求帮忙点个Star,哈哈,第一次使用Github,以后会分享更多代码,一起加油。

同时推荐作者的C++图像系列知识:
[数字图像处理] 一.MFC详解显示BMP格式图片
[数字图像处理] 二.MFC单文档分割窗口显示图片
[数字图像处理] 三.MFC实现图像灰度、采样和量化功能详解
[数字图像处理] 四.MFC对话框绘制灰度直方图
[数字图像处理] 五.MFC图像点运算之灰度线性变化、灰度非线性变化、阈值化和均衡化处理详解
[数字图像处理] 六.MFC空间几何变换之图像平移、镜像、旋转、缩放详解
[数字图像处理] 七.MFC图像增强之图像普通平滑、高斯平滑、Laplacian、Sobel、Prewitt锐化详解

前文参考:
[Python图像处理] 一.图像处理基础知识及OpenCV入门函数
[Python图像处理] 二.OpenCV+Numpy库读取与修改像素
[Python图像处理] 三.获取图像属性、兴趣ROI区域及通道处理
[Python图像处理] 四.图像平滑之均值滤波、方框滤波、高斯滤波及中值滤波
[Python图像处理] 五.图像融合、加法运算及图像类型转换
[Python图像处理] 六.图像缩放、图像旋转、图像翻转与图像平移
[Python图像处理] 七.图像阈值化处理及算法对比
[Python图像处理] 八.图像腐蚀与图像膨胀

数学形态学(Mathematical morphology)是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:腐蚀和膨胀、开运算和闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换等。

本篇文章主要讲解Python调用OpenCV实现图像形态学转化,包括图像开运算、图像闭运算和梯度运算,基础性知识希望对您有所帮助。
1.图像开运算
2.图像闭运算
3.图像梯度运算

PS:文章参考自己以前系列图像处理文章及OpenCV库函数,同时部分参考网易云lilizong老师的视频,推荐大家去学习。同时,本篇文章涉及到《计算机图形学》基础知识,请大家下来补充。

PSS:2019年1~2月作者参加了CSDN2018年博客评选,希望您能投出宝贵的一票。我是59号,Eastmount,杨秀璋。投票地址:https://bss.csdn.net/m/topic/blog_star2018/index

五年来写了314篇博客,12个专栏,是真的热爱分享,热爱CSDN这个平台,也想帮助更多的人,专栏包括Python、数据挖掘、网络爬虫、图像处理、C#、Android等。现在也当了两年老师,更是觉得有义务教好每一个学生,让贵州学子好好写点代码,学点技术,"师者,传到授业解惑也",提前祝大家新年快乐。2019我们携手共进,为爱而生。

一. 图像开运算

1.基本原理
图像开运算是图像依次经过腐蚀、膨胀处理后的过程。图像被腐蚀后,去除了噪声,但是也压缩了图像;接着对腐蚀过的图像进行膨胀处理,可以去除噪声,并保留原有图像。如下图所示:

开运算(img) = 膨胀( 腐蚀(img) )
下图是hanshanbuleng博主提供的开运算效果图,推荐大家学习他的文章。

https://blog.csdn.net/hanshanbuleng/article/details/80657148

2.函数原型
图像开运算主要使用的函数morphologyEx,它是形态学扩展的一组函数,其参数cv2.MORPH_OPEN对应开运算。其原型如下:
dst = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)

参数dst表示处理的结果,src表示原图像,cv2.MORPH_OPEN表示开运算,kernel表示卷积核。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。

运行结果如下图所示:

3.代码实现
完整代码如下所示:

#encoding:utf-8
import cv2  
import numpy as np  

#读取图片
src = cv2.imread('test01.png', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((5,5), np.uint8)

#图像开运算
result = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示,可以看到噪声已经被去除了。

但是结果result中仍然有部分噪声,如果想去除更彻底将卷积设置为10*10的。 kernel = np.ones((10,10), np.uint8) result = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)


二. 图像闭运算

1.基本原理
图像闭运算是图像依次经过膨胀、腐蚀处理后的过程。图像先膨胀,后腐蚀,它有助于关闭前景物体内部的小孔,或物体上的小黑点。如下图所示:

闭运算(img) = 腐蚀( 膨胀(img) )
下图是hanshanbuleng博主提供的开运算效果图,推荐大家学习他的文章。

https://blog.csdn.net/hanshanbuleng/article/details/80657148

2.函数原型
图像闭运算主要使用的函数morphologyEx,其原型如下:
dst = cv2.morphologyEx(src, cv2.MORPH_CLOSE, kernel)

参数dst表示处理的结果,src表示原图像, cv2.MORPH_CLOSE表示闭运算,kernel表示卷积核。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。

运行结果如下图所示:

3.代码实现
完整代码如下所示:

#encoding:utf-8
import cv2  
import numpy as np  

#读取图片
src = cv2.imread('test03.png', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((10,10), np.uint8)

#图像闭运算
result = cv2.morphologyEx(src, cv2.MORPH_CLOSE, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示,可以看到中间的噪声去掉。



三. 图像梯度运算

1.基本原理
图像梯度运算是膨胀图像减去腐蚀图像的结果,得到图像的轮廓,其中二值图像1表示白色点,0表示黑色点。如下图所示:

梯度运算(img) = 膨胀(img) - 腐蚀(img)

2.函数原型
图像梯度运算主要使用的函数morphologyEx,参数为cv2.MORPH_GRADIENT。其原型如下:
dst = cv2.morphologyEx(src, cv2.MORPH_GRADIENT, kernel)

参数dst表示处理的结果,src表示原图像, cv2.MORPH_GRADIENT表示梯度运算,kernel表示卷积核。5*5的卷积核可以采用函数 np.ones((5,5), np.uint8) 构建。
运行结果如下图所示:

3.代码实现
完整代码如下所示:

#encoding:utf-8
import cv2  
import numpy as np  

#读取图片
src = cv2.imread('test04.png', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((10,10), np.uint8)

#图像闭运算
result = cv2.morphologyEx(src, cv2.MORPH_GRADIENT, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示,可以看到中间的噪声去掉。

希望文章对大家有所帮助,如果有错误或不足之处,还请海涵。最近经历的事情太多,有喜有悲,关闭了朋友圈,希望通过不断学习和写文章来忘记烦劳,将忧郁转换为动力,每周学习都记录下来,加油!!!
(By:Eastmount 2018-11-02 中午12点 https://blog.csdn.net/Eastmount/)

2016-09-26 09:34:20 l494926429 阅读数 3578
  • MATLAB基础知识大串讲

    Matlab基础知识大串讲,具体内容包括matlab下载安装、数据类型、矩阵操作、运算符、字符串处理、数组运算、M文件、变量、控制流、脚本与函数、图形绘制、二维图形绘制、三维图形绘制、四维图形绘制。

    33038 人正在学习 去看看 魏伟

膨胀、腐蚀、开、闭运算是数学形态学最基本的变换。
本文主要针对二值图像的形态学
膨胀:把二值图像各1像素连接成分的边界扩大一层(填充边缘或0像素内部的孔);
腐蚀:把二值图像各1像素连接成分的边界点去掉从而缩小一层(可提取骨干信息,去掉毛刺,去掉孤立的0像素);
开:先腐蚀再膨胀,可以去掉目标外的孤立点
闭:先膨胀再腐蚀,可以去掉目标内的孔。
以下参考论文:《数学形态学在图像处理中的应用》

二值形态学
        数学形态学中二值图像的形态变换是一种针对集合的处理过程。其形态算子的实质是表达物体或形状的集合与结构元素间的相互作用,结构元素的形状就决定了这种运算所提取的信号的形状信息。形态学图像处理是在图像中移动一个结构元素,然后将结构元素与下面的二值图像进行交、并等集合运算。
        基本的形态运算是腐蚀和膨胀。
        在形态学中,结构元素是最重要最基本的概念。结构元素在形态变换中的作用相当于信号处理中的“滤波窗口”。用B(x)代表结构元素,对工作空间E中的每一点x,腐蚀和膨胀的定义为:
       
        用B(x)对E进行腐蚀的结果就是把结构元素B平移后使B包含于E的所有点构成的集合。用B(x)对E进行膨胀的结果就是把结构元素B平移后使B与E的交集非空的点构成的集合。先腐蚀后膨胀的过程称为开运算。它具有消除细小物体,在纤细处分离物体和平滑较大物体边界的作用。先膨胀后腐蚀的过程称为闭运算。它具有填充物体内细小空洞,连接邻近物体和平滑边界的作用。
        可见,二值形态膨胀与腐蚀可转化为集合的逻辑运算,算法简单,适于并行处理,且易于硬件实现,适于对二值图像进行图像分割、细化、抽取骨架、边缘提取、形状分析。但是,在不同的应用场合,结构元素的选择及其相应的处理算法是不一样的,对不同的目标图像需设计不同的结构元素和不同的处理算法。结构元素的大小、形状选择合适与否,将直接影响图像的形态运算结果。因此,很多学者结合自己的应用实际,提出了一系列的改进算法。如梁勇提出的用多方位形态学结构元素进行边缘检测算法既具有较好的边缘定位能力,又具有很好的噪声平滑能力。许超提出的以最短线段结构元素构造准圆结构元素或序列结构元素生成准圆结构元素相结合的设计方法,用于骨架的提取,可大大减少形态运算的计算量,并可同时满足尺度、平移及旋转相容性,适于对形状进行分析和描述。

数学形态学在图像处理中的主要应用包括:边缘检测、图像分割、形态骨架提取、噪声滤除。
选取结构元素的方法:多结构元素、遗传算法。

以上摘自 http://blog.csdn.net/welcome_xu/article/details/6694985



上边这个图,如果求凸起点的位置,那就是:

1. 图像二值化,对图像的前景背景进行分割;

2.得到背景后,对背景进行闭运算,这样就把那个凹陷弄没;

3.最后再对两张图进行差分,就得出了凸起点的位置。

2017-03-09 10:01:35 zhangyibo123456789 阅读数 26112
  • MATLAB基础知识大串讲

    Matlab基础知识大串讲,具体内容包括matlab下载安装、数据类型、矩阵操作、运算符、字符串处理、数组运算、M文件、变量、控制流、脚本与函数、图形绘制、二维图形绘制、三维图形绘制、四维图形绘制。

    33038 人正在学习 去看看 魏伟
matlab图像处理形态学滤波之开运算闭运算(1)

       刚入门的朋友估计对开闭运算还不太了解,首先先了解几个名词:

腐蚀:  是一种消除边界点,使边界向内部收缩的过程。可以用来消除小且无意义的物体。
 
膨胀:  是将与物体接触的所有背景点合并到该物体中,使边界向外部扩张的过程。可以用来填补物体中的空洞。 


开运算:  先腐蚀后膨胀的过程开运算。用来消除小物体、在纤细点处分离物体、平滑较大物 体的边界的同时并不明显改变其面积。开运算通常是在需要去除小颗粒噪声,以及断开目标物之间粘连时使用。其主要作用与腐蚀相似,与腐蚀操作相比,具有可以基本保持目标原有大小不变的优点。 


闭运算:  先膨胀后腐蚀的过程称为闭运算。用来填充物体内细小空洞、连接邻近物体、平滑 其边界的同时并不明显改变其面积。

       对一个图像先进行腐蚀运算然后再膨胀的操作过程称为开运算,它可以消除细小的物体、在纤细点处分离物体、平滑较大物体的边界时不明显的改变其面积。如果对一个图像先膨胀然后再收缩,我们称之为闭运算,它具有填充物体内细小的空洞、连接邻近物体、在不明显改变物体面积的情况下平滑其边界的作用。通常情况下,当有噪声的图像用阈值二值化后,所得到的边界是很不平滑的,物体区域具有一些错判的孔洞,背景区域散布着一些小的噪声物体,连续的开和闭运算可以显著的改善这种情况,这时候需要在连接几次腐蚀迭代之后,再加上相同次数的膨胀,才可以产生所期望的效果。

       所以,换一种说法,图像的开闭运算实质上是数学形态的非线性滤波去噪的一个过程。

       知道以上名词了我们就可以把我们的想法与之匹配,通过开闭运算来实现我们的目的。

       matlab程序如下:
i=imread('image.jpg');
i1=rgb2gray(i); %转灰度图像
i2=im2bw(i1);    %二值化搜索
i3 = bwmorph(i2,'close');  %闭运算
imshow(i3)
i4 = bwmorph(i2,'open');  %开运算
figure, imshow(i4)
%bwmorph还支持类似bothat tophat thin等操作个体看下help参数
%说明:前提条件是传入的图像应该是二值后的

更强大的有关腐蚀膨胀以及开闭运算的matlab程序参考链接:

http://blog.csdn.net/zhangyibo123456789/article/details/60957376


2017-05-29 22:17:31 yi_tech_blog 阅读数 6174
  • MATLAB基础知识大串讲

    Matlab基础知识大串讲,具体内容包括matlab下载安装、数据类型、矩阵操作、运算符、字符串处理、数组运算、M文件、变量、控制流、脚本与函数、图形绘制、二维图形绘制、三维图形绘制、四维图形绘制。

    33038 人正在学习 去看看 魏伟

应用背景:在前两篇博文中我们看到腐蚀操作会缩小图像前景、膨胀操作会增大图像前景,经过这两种变换后图像的细节也发生了一些变换,如果腐蚀和膨胀同时处理图像会产生什么效果呢,这个问题就是本文要讲的开操作。

基本原理:在二值形态学图像处理中,除了腐蚀和膨胀这两种一次运算外,还有二次运算操作,开运算就是其中一种。用结构元B对图像A进行开操作表示为A 。B,用集合运算定义如下:

                                                                       

从上式可知,开操作是先对图像进行腐蚀然后进行膨胀。

C++实现:把前两篇博文中的腐蚀操作和膨胀操作的代码合在一起就完成了开操作的C++实现。

运行结果:在VS2010中运行MFC多文档程序得到结果如下图

开操作前的lena图像


开操作后的lena图像


从开操作的处理结果来看,达到先腐蚀后膨胀的双重效果,开操作平滑了图像物体的边缘、断开了较窄的狭颈并消除了细长的突出物。

2017-06-03 17:53:20 u011574296 阅读数 540
  • MATLAB基础知识大串讲

    Matlab基础知识大串讲,具体内容包括matlab下载安装、数据类型、矩阵操作、运算符、字符串处理、数组运算、M文件、变量、控制流、脚本与函数、图形绘制、二维图形绘制、三维图形绘制、四维图形绘制。

    33038 人正在学习 去看看 魏伟

形态学 开运算 闭运算

python 图像开闭运算

阅读数 3650

没有更多推荐了,返回首页