进程间通信 订阅
进程间通信就是在不同进程之间传播或交换信息,那么不同进程之间存在着什么双方都可以访问的介质呢?进程的用户空间是互相独立的,一般而言是不能互相访问的,唯一的例外是共享内存区。另外,系统空间是“公共场所”,各进程均可以访问,所以内核也可以提供这样的条件。此外,还有双方都可以访问的外设。在这个意义上,两个进程当然也可以通过磁盘上的普通文件交换信息,或者通过“注册表”或其它数据库中的某些表项和记录交换信息。广义上这也是进程间通信的手段,但是一般都不把这算作“进程间通信”。 展开全文
进程间通信就是在不同进程之间传播或交换信息,那么不同进程之间存在着什么双方都可以访问的介质呢?进程的用户空间是互相独立的,一般而言是不能互相访问的,唯一的例外是共享内存区。另外,系统空间是“公共场所”,各进程均可以访问,所以内核也可以提供这样的条件。此外,还有双方都可以访问的外设。在这个意义上,两个进程当然也可以通过磁盘上的普通文件交换信息,或者通过“注册表”或其它数据库中的某些表项和记录交换信息。广义上这也是进程间通信的手段,但是一般都不把这算作“进程间通信”。
信息
外文名
Interprocess communication
简    称
IPC
中文名
进程间通信
应用领域
计算机
进程间通信概述
进程间通信(IPC,Interprocess communication)是一组编程接口,让程序员能够协调不同的进程,使之能在一个操作系统里同时运行,并相互传递、交换信息。这使得一个程序能够在同一时间里处理许多用户的要求。因为即使只有一个用户发出要求,也可能导致一个操作系统中多个进程的运行,进程之间必须互相通话。IPC接口就提供了这种可能性。每个IPC方法均有它自己的优点和局限性,一般,对于单个程序而言使用所有的IPC方法是不常见的。    IPC方法包括管道(PIPE)、消息排队、旗语、共用内存以及套接字(Socket)。 [1] 
收起全文
精华内容
参与话题
问答
  • Linux系统编程第05期:进程间通信

    千人学习 2019-07-25 09:31:02
    本视频教程为《Linux系统编程》第05期,本期课程将会带领大家学习Linux下将近15种进程间通信IPC工具的使用,了解它们的通信机制、编程实例、使用场景、内核中的实现以及各自的优缺点。 本课程会提供PDF版本的...
  • 进程间通信的五种方式

    千次阅读 多人点赞 2018-08-17 14:07:57
    进程间通信的意思就是在不同进程之间传递信息。它是一组编程接口,让程序员协调不同进程,使能够相互传递消息。 IPC目的 1)数据传输:一个进程需要将它的数据发送给另一个进程,发送的数据量在一个字节到几兆字节...

    进程间通信的意思就是在不同进程之间传递信息。它是一组编程接口,让程序员协调不同进程,使能够相互传递消息。

    IPC目的

    1)数据传输:一个进程需要将它的数据发送给另一个进程,发送的数据量在一个字节到几兆字节之间。

    2)共享数据:多个进程想要操作共享数据,一个进程对共享数据的修改,别的进程应该立刻看到。

    3)通知事件:一个进程需要向另一个或一组进程发送消息,通知它(它们)发生了某种事件(如进程终止时要通知父进程)。

    4)资源共享:多个进程之间共享同样的资源。为了作到这一点,需要内核提供锁和同步机制。

    5)进程控制:有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另一个进程的所有陷入和异常,并能够及时知道它的状态改变。

    IPC方式包括:管道、系统IPC(信号量、消息队列、共享内存)和套接字(socket)。

    管道:

    3种。管道是面向字节流,自带互斥与同步机制,生命周期随进程。 

    1)普通管道PIPE, 通常有两种限制,一是半双工,数据同时只能单向传输;二是只能在父子或者兄弟进程间使用.,

    2)命令流管道s_pipe: 去除了第一种限制,为全双工,可以同时双向传输,

    3)命名管道FIFO, 去除了第二种限制,可以在许多并不相关的进程之间进行通讯。

    ①无名管道:没有磁盘节点,仅仅作为一个内存对象,用完就销毁了。因此没有显示的打开过程,实际在创建时自动打开,并且生成内存iNode,其内存对象和普通文件的一致,所以读写操作用的同样的接口,但是专用的。因为不能显式打开(没有任何标示),所以只能用在父子进程,兄弟进程, 或者其他继承了祖先进程的管道文件对象的两个进程间使用【具有共同祖先的进程】

    int pipe(int fd[2]);//由参数fd返回两个文件描述符,fd[0]为读而打开  fd[1]为写而打开

    int read(fd[0], buff, int size);    int write(fd[1], buff, int size);

    ②有名管道:任意两个或多个进程间通讯。因为它在文件目录树中有一个文件标示(FIFO) 实际不占据磁盘空间,数据缓存在内存上。它与普通文件类似,都遵循打开,读,写,关闭的过程,但读写的内部实现和普通文件不同,和无名管道一样。

    命令:mkfifo a=filename  //mkfifo(char *path,int flag)系统调用。

    标识符与键:每个内核的IPC结构(消息队列、信号量或共享内存)都用一个非负整数标识符引用。

    标识符是IPC对象的内部名。为了是多个进程间能够访问到同一IPC对象,需要提供一个外部名。即“键(key)”,键与每个IPC对象关联,并作为对象的外部名。键的数据类型为key_t,由内核变换成标识符。

    内核对象:用于进程间通讯时,多进程能访问同一资源的记录,用标识符标识。。

                                     

    信号量:

                  1.临界资源:同一时刻,只能被一个进程访问的资源

                   2.临界区:访问临界资源的代码区

                  3.原子操作:任何情况下不能被打断的操作。

                它是一个计数器,记录资源能被多少个进程同时访问。用于控制多进程对临界资源的访问(同步)),并且是非负值。主要作为进程间以及同一进程的不同线程间的同步手段。

    操作:创建或获取,若是创建必须初始化,否则不用初始化。

          int semget((key_t)key, int nsems, int flag);//创建或获取信号量

          int semop(int semid, stuct sembuf*buf, int length);//加一操作(V操作):释放资源;减一操作(P操作):获取资源

          int semct(int semid, int pos, int cmd);//初始化和删除

    注:我们可以封装成库,实现信号量的创建或初始化,p操作,V操作,删除操作。。

    消息队列:

            消息队列是消息的链表,是存放在内核中并由消息队列标识符标识。因此是随内核持续的,只有在内核重起或者显示删除一个消息队列时,该消息队列才会真正被删除。。消息队列克服了信号传递信息少,管道只能承载无格式字节流以及缓冲区受限等特点。允许不同进程将格式化的数据流以消息队列形式发送给任意进程,对消息队列具有操作权限的进程都可以使用msgget完成对消息队列的操作控制,通过使用消息类型,进程可以按顺序读信息,或为消息安排优先级顺序。

              与信号量相比,都以内核对象确保多进程访问同一消息队列。但消息队列发送实际数据,信号量进行进程同步控制。

             与管道相比,管道发送的数据没有类型,读取数据端无差别从管道中按照前后顺序读取;消息队列有类型,读端可以根据数据类型读取特定的数据。

             操作:创建或获取消息队列, int msgget((key_tkey, int flag);//若存在获取,否则创建它

            发送消息:int msgsnd(int msgid, void *ptr, size_t size, int flag); ptr指向一个结构体存放类型和数据 size 数据的大小

            接受消息:int msgrcv(int msgid, void *ptr, size_t size, long type, int flag);

            删除消息队列: int msgctl(int msgid, int cmd, struct msgid_ds*buff);

    共享内存:

           共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。

            共享内存是最快的一种IPC,因为不需要在客户进程和服务器进程之间赋值。使用共享内存的唯一注意的是是多个进程对一给定的存储区的同步访问。【若服务器进程正在向共享存储区写入数据,则写完数据之前客户进程不应读取数据,或者客户进程正在从共享内存中读取数据,服务进程不应写入数据。。所以我们要对共享内存进行同步控制,通常是信号量。】

    int shmget((key_t)key, size_t size, int flag); //size 开辟内存空间的大小,flag:若存在则获取,否则创建共享内存存储段,返回一个标识符。

    void *shmat(int shmid, void *addr, int flag); //将共享内存段连接到进程的地址空间中,返回一个共享内存首地址

           函数shmat将标识号为shmid共享内存映射到调用进程的地址空间中,映射的地址由参数shmaddr和shmflg共同确定,其准则为:

           (1) 如果参数shmaddr取值为NULL,系统将自动确定共享内存链接到进程空间的首地址。

           (2) 如果参数shmaddr取值不为NULL且参数shmflg没有指定SHM_RND标志,系统将运用地址shmaddr链接共享内存。

           (3) 如果参数shmaddr取值不为NULL且参数shmflg指定了SHM_RND标志位,系统将地址shmaddr对齐后链接共享内存。其中选项SHM_RND的意思是取整对齐,常数SHMLBA代表了低边界地址的倍数,公式“shmaddr – (shmaddr % SHMLBA)”的意思是将地址shmaddr移动到低边界地址的整数倍上。

    int shmdt(void *ptr); //断开进程与共享内存的链接

             进程脱离共享内存区后,数据结构 shmid_ds 中的 shm_nattch 就会减 1 。但是共享段内存依然存在,只有 shm_attch 为 0 后,即没有任何进程再使用该共享内存区,共享内存区才在内核中被删除。一般来说,当一个进程终止时,它所附加的共享内存区都会自动脱离。

    int shmctl(int shmid, int cmd, struct shmid_ds *buff); //删除共享内存(内核对象)

           shmid是shmget返回的标识符;

          cmd是执行的操作:有三种值,一般为 IPC_RMID  删除共享内存段;

          buff默认为0.

          如果共享内存已经与所有访问它的进程断开了连接,则调用IPC_RMID子命令后,系统将立即删除共享内存的标识符,并删除该共享内存区,以及所有相关的数据结构;

           如果仍有别的进程与该共享内存保持连接,则调用IPC_RMID子命令后,该共享内存并不会被立即从系统中删除,而是被设置为IPC_PRIVATE状态,并被标记为”已被删除”(使用ipcs命令可以看到dest字段);直到已有连接全部断开,该共享内存才会最终从系统中消失。

            需要说明的是:一旦通过shmctl对共享内存进行了删除操作,则该共享内存将不能再接受任何新的连接,即使它依然存在于系统中!所以,可以确知, 在对共享内存删除之后不可能再有新的连接,则执行删除操作是安全的;否则,在删除操作之后如仍有新的连接发生,则这些连接都将可能失败!

    消息队列和管道基本上都是4次拷贝,而共享内存(mmap, shmget)只有两次。

         4次:1,由用户空间的buf中将数据拷贝到内核中。2,内核将数据拷贝到内存中。3,内存到内核。4,内核到用户空间的buf.

         2次: 1,用户空间到内存。 2,内存到用户空间。

            消息队列、共享内存和管道都是内核对象,所执行的操作也都是系统调用,而这些数据最终是要存储在内存中执行的。因此不可避免的要经过4次数据的拷贝。但是共享内存不同,当执行mmap或者shmget时,会在内存中开辟空间,然后再将这块空间映射到用户进程的虚拟地址空间中,即返回值为一个指向逻辑地址的指针。当用户使用这个指针时,例如赋值操作,会引起一个从逻辑地址到物理地址的转化,会将数据直接写入对应的物理内存中,省去了拷贝到内核中的过程。当读取数据时,也是类似的过程,因此总共有两次数据拷贝。

    socket通信

           适合同一主机的不同进程间和不同主机的进程间进行全双工网络通信。但并不只是Linux有,在所有提供了TCP/IP协议栈的操作系统中几乎都提供了socket,而所有这样操作系统,对套接字的编程方法几乎是完全一样的,即“网络编程”。

    展开全文
  • 进程间通讯的7种方式

    万次阅读 多人点赞 2019-04-26 14:23:24
    命名管道FIFO:有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间通信。 消息队列MessageQueue:消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能...

    1、常见的通信方式

    1. 管道pipe:管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。
    2. 命名管道FIFO:有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。
    3. 消息队列MessageQueue:消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。
    4. 共享存储SharedMemory:共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的 IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。
    5. 信号量Semaphore:信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。
    6. 套接字Socket:套解口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。
    7. 信号 ( sinal ) : 信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。

    2、按通信类型区分

    1. 共享存储器系统
      1.基于共享数据结构的通信方式
      (仅适用于传递相对少量的数据,通信效率低,属于低级通信)
      2.基于共享存储区的通信方式
    2. 管道通信系统
      管道是指用于连接一个读进程和一个写进程以实现它们之间通信的一个共享文件(pipe文件)
      管道机制需要提供一下几点的协调能力
      1.互斥,即当一个进程正在对pipe执行读/写操作时,其它进程必须等待
      2.同步,当一个进程将一定数量的数据写入,然后就去睡眠等待,直到读进程将数据取走,再去唤醒。读进程与之类似
      3.确定对方是否存在
    3. 消息传递系统
      1.直接通信方式
      发送进程利用OS所提供的发送原语直接把消息发给目标进程
      2.间接通信方式
      发送和接收进程都通过共享实体(邮箱)的方式进行消息的发送和接收
    4. 客户机服务器系统
      1.套接字 – 通信标识型的数据结构是进程通信和网络通信的基本构件
      基于文件型的 (当通信进程都在同一台服务器中)其原理类似于管道
      基于网络型的(非对称方式通信,发送者需要提供接收者命名。通信双方的进程运行在不同主机环境下被分配了一对套接字,一个属于发送进程,一个属于接收进程)
      2.远程过程调用和远程方法调用

    3、详解

    3.1 管道

    管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。

    1、特点:
    它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

    它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

    它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

    管道分为pipe(无名管道)和fifo(命名管道)两种,除了建立、打开、删除的方式不同外,这两种管道几乎是一样的。他们都是通过内核缓冲区实现数据传输。

    • pipe用于相关进程之间的通信,例如父进程和子进程,它通过pipe()系统调用来创建并打开,当最后一个使用它的进程关闭对他的引用时,pipe将自动撤销。
    • FIFO即命名管道,在磁盘上有对应的节点,但没有数据块——换言之,只是拥有一个名字和相应的访问权限,通过mknode()系统调用或者mkfifo()函数来建立的。一旦建立,任何进程都可以通过文件名将其打开和进行读写,而不局限于父子进程,当然前提是进程对FIFO有适当的访问权。当不再被进程使用时,FIFO在内存中释放,但磁盘节点仍然存在。

    管道的实质是一个内核缓冲区,进程以先进先出的方式从缓冲区存取数据:管道一端的进程顺序地将进程数据写入缓冲区,另一端的进程则顺序地读取数据,该缓冲区可以看做一个循环队列,读和写的位置都是自动增加的,一个数据只能被读一次,读出以后再缓冲区都不复存在了。当缓冲区读空或者写满时,有一定的规则控制相应的读进程或写进程是否进入等待队列,当空的缓冲区有新数据写入或慢的缓冲区有数据读出时,就唤醒等待队列中的进程继续读写。

    在这里插入图片描述

    3.2 无名管道

    pipe的例子:父进程创建管道,并在管道中写入数据,而子进程从管道读出数据

    在这里插入图片描述

    3.3 命名管道

    和无名管道的主要区别在于,命名管道有一个名字,命名管道的名字对应于一个磁盘索引节点,有了这个文件名,任何进程有相应的权限都可以对它进行访问。

    而无名管道却不同,进程只能访问自己或祖先创建的管道,而不能访任意访问已经存在的管道——因为没有名字。

    Linux中通过系统调用mknod()或makefifo()来创建一个命名管道。最简单的方式是通过直接使用shell

    mkfifo myfifo
    

    等价于

    mknod myfifo p
    

    以上命令在当前目录下创建了一个名为myfifo的命名管道。用ls -p命令查看文件的类型时,可以看到命名管道对应的文件名后有一条竖线"|",表示该文件不是普通文件而是命名管道。

    使用open()函数通过文件名可以打开已经创建的命名管道,而无名管道不能由open来打开。当一个命名管道不再被任何进程打开时,它没有消失,还可以再次被打开,就像打开一个磁盘文件一样。

    可以用删除普通文件的方法将其删除,实际删除的事磁盘上对应的节点信息。

    例子:用命名管道实现聊天程序,一个张三端,一个李四端。两个程序都建立两个命名管道,fifo1,fifo2,张三写fifo1,李四读fifo1;李四写fifo2,张三读fifo2。

    用select把,管道描述符和stdin假如集合,用select进行阻塞,如果有i/o的时候唤醒进程。(粉红色部分为select部分,黄色部分为命名管道部分)

    在这里插入图片描述

    在这里插入图片描述

    3.4 消息队列

    消息队列,就是一个消息的链表,是一系列保存在内核中消息的列表。用户进程可以向消息队列添加消息,也可以向消息队列读取消息。

    消息队列与管道通信相比,其优势是对每个消息指定特定的消息类型,接收的时候不需要按照队列次序,而是可以根据自定义条件接收特定类型的消息。

    可以把消息看做一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向消息队列中按照一定的规则添加新消息,对消息队列有读权限的进程可以从消息队列中读取消息。

    消息队列的常用函数如下表:

    在这里插入图片描述

    进程间通过消息队列通信,主要是:创建或打开消息队列,添加消息,读取消息和控制消息队列。

    3.5 共享内存

    共享内存允许两个或多个进程共享一个给定的存储区,这一段存储区可以被两个或两个以上的进程映射至自身的地址空间中,一个进程写入共享内存的信息,可以被其他使用这个共享内存的进程,通过一个简单的内存读取错做读出,从而实现了进程间的通信。

    采用共享内存进行通信的一个主要好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝,对于像管道和消息队里等通信方式,则需要再内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次:一次从输入文件到共享内存区,另一次从共享内存到输出文件。

    在这里插入图片描述

    一般而言,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时在重新建立共享内存区域;而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件,因此,采用共享内存的通信方式效率非常高。

    在这里插入图片描述

    共享内存有两种实现方式:1、内存映射 2、共享内存机制

    3.6 信号量

    信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。

    1、特点
    信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。

    信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。

    每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。

    支持信号量组。

    2、原型
    最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。

    Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。

    #include <sys/sem.h>
    // 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1
    int semget(key_t key, int num_sems, int sem_flags);
    // 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1
    int semop(int semid, struct sembuf semoparray[], size_t numops);  
    // 控制信号量的相关信息
    int semctl(int semid, int sem_num, int cmd, ...);
    
    展开全文
  • Linux进程间通信详解

    千次阅读 2019-05-18 02:00:42
    之前我总结了有关进程及进程控制的相关知识,不是很了解的朋友可以看一看: 进程:... ... 这篇文章主要为大家总结一下进程间通信的几种方式: 首先请大家想一个问题,终端...

    之前我总结了有关进程及进程控制的相关知识,不是很了解的朋友可以看一看:

    进程:https://blog.csdn.net/Sun_Life_/article/details/88580785

    进程控制:https://blog.csdn.net/Sun_Life_/article/details/90049461

    这篇文章主要为大家总结一下进程间通信的几种方式:

    首先请大家想一个问题,终端下的各个进程间相对独立,犹如一座座孤岛,那么如果没有一种方式在这些岛屿之间传送消息和物资,那么岛上的人们就无法正常的协作沟通。进程也是一样,为了相互协作就需要进行进程间通信。

    进程间通信的目的 

    1. 数据传输

          场景:一个进程需要将它的数据发送给另一个进程

    2. 资源共享

          场景:多个进程之间共享同样的资源 

    3. 通知事件

          场景:一个进程需要向另一个或一组进程发送消息,通知事件(如子进程终止通知父进程)

    4. 进程控制

                 场景:有些进程希望完全控制另一个进程的执行(如Debug进程),此时需要拦截另一个进程的所有异常,并能及时知           道其状态改变

    进程间通信方式

    • 管道

           进程间通信方式——管道:https://blog.csdn.net/Sun_Life_/article/details/90049515

    • 消息队列

           进程间通信方式——消息队列:https://blog.csdn.net/Sun_Life_/article/details/90382863

    • 共享内存

           进程间通信方式——共享内存:https://blog.csdn.net/Sun_Life_/article/details/90412244

    • 信号量

    IPC相关命令

        ipcs    查看IPC信息

            -q    查看消息队列

            -m   查看共享内存

            -s    查看信号量

        ipcrm    删除IPC

            -q  msgid

            -m  msgid

            -s  msgid

    不同IPC部分特性的比较:

    展开全文
  • 进程间通信——几种方式的比较和详细实例

    万次阅读 多人点赞 2017-11-14 09:42:47
    1、进程间通信的定义 2、几种通信方式的比较 3、几种通信方式的详细实例 1、进程间通信的定义 进程间通信就是在不同进程之间传播或交换信息,那么不同进程之间存在着什么双方都可以访问的介质呢?进程的用户...

    由网上资源整合:

    1、进程间通信的定义

    2、几种通信方式的比较

    3、几种通信方式的详细实例

     

    1、进程间通信的定义

    进程间通信就是在不同进程之间传播或交换信息,那么不同进程之间存在着什么双方都可以访问的介质呢?进程的用户空间是互相独立的,一般而言是不能互相访问的,唯一的例外是共享内存区。另外,系统空间是“公共场所”,各进程均可以访问,所以内核也可以提供这样的条件。此外,还有双方都可以访问的外设。在这个意义上,两个进程当然也可以通过磁盘上的普通文件交换信息,或者通过“注册表”或其它数据库中的某些表项和记录交换信息。广义上这也是进程间通信的手段,但是一般都不把这算作“进程间通信”。进程间通信(IPC,Interprocess communication)是一组编程接口,让程序员能够协调不同的进程,使之能在一个操作系统里同时运行,并相互传递、交换信息。IPC方法包括管道(PIPE)、消息队列、信号、共用内存以及套接字(Socket)。

    管道包括三种:

    1)普通管道PIPE, 通常有两种限制,一是单工,只能单向传输;二是只能在父子或者兄弟进程间使用.

    2)流管道s_pipe: 去除了第一种限制,为半双工,可以双向传输.

    3)命名管道:name_pipe, 去除了第二种限制,可以在许多并不相关的进程之间进行通讯

     

    2、几种通信方式的比较

    # 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。
    # 有名管道 (named pipe) : 有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。
    # 信号量( semophore ) : 信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。
    # 消息队列( message queue ) : 消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。
    # 信号 ( sinal ) : 信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。
    # 共享内存( shared memory ) :共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的 IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号两,配合使用,来实现进程间的同步和通信。
    # 套接字( socket ) : 套解口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。

     

    3、几种通信方式的详细实例

    进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。

    IPC的方式通常有管道(包括无名管道和命名管道)、消息队列、信号量、共享存储、Socket、Streams等。其中 Socket和Streams支持不同主机上的两个进程IPC。

    以Linux中的C语言编程为例。

    一、管道

    管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。

    1、特点:

    1. 它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

    2. 它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

    3. 它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

    一、管道

    管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。

    1、特点:

    1. 它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

    2. 它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

    3. 它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

    2、原型:

    1 #include <unistd.h>
    2 int pipe(int fd[2]);    // 返回值:若成功返回0,失败返回-1

    当一个管道建立时,它会创建两个文件描述符:fd[0]为读而打开,fd[1]为写而打开。如下图:

    要关闭管道只需将这两个文件描述符关闭即可。

    3、例子

    单个进程中的管道几乎没有任何用处。所以,通常调用 pipe 的进程接着调用 fork,这样就创建了父进程与子进程之间的 IPC 通道。如下图所示:

    若要数据流从父进程流向子进程,则关闭父进程的读端(fd[0])与子进程的写端(fd[1]);反之,则可以使数据流从子进程流向父进程。

    复制代码

     1 #include<stdio.h>
     2 #include<unistd.h>
     3 
     4 int main()
     5 {
     6     int fd[2];  // 两个文件描述符
     7     pid_t pid;
     8     char buff[20];
     9 
    10     if(pipe(fd) < 0)  // 创建管道
    11         printf("Create Pipe Error!\n");
    12 
    13     if((pid = fork()) < 0)  // 创建子进程
    14         printf("Fork Error!\n");
    15     else if(pid > 0)  // 父进程
    16     {
    17         close(fd[0]); // 关闭读端
    18         write(fd[1], "hello world\n", 12);
    19     }
    20     else
    21     {
    22         close(fd[1]); // 关闭写端
    23         read(fd[0], buff, 20);
    24         printf("%s", buff);
    25     }
    26 
    27     return 0;
    28 }

    复制代码

    二、FIFO

    FIFO,也称为命名管道,它是一种文件类型。

    1、特点

    1. FIFO可以在无关的进程之间交换数据,与无名管道不同。

    2. FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。

    2、原型

    1 #include <sys/stat.h>
    2 // 返回值:成功返回0,出错返回-1
    3 int mkfifo(const char *pathname, mode_t mode);

    其中的 mode 参数与open函数中的 mode 相同。一旦创建了一个 FIFO,就可以用一般的文件I/O函数操作它。

    当 open 一个FIFO时,是否设置非阻塞标志(O_NONBLOCK)的区别:

    • 若没有指定O_NONBLOCK(默认),只读 open 要阻塞到某个其他进程为写而打开此 FIFO。类似的,只写 open 要阻塞到某个其他进程为读而打开它。

    • 若指定了O_NONBLOCK,则只读 open 立即返回。而只写 open 将出错返回 -1 如果没有进程已经为读而打开该 FIFO,其errno置ENXIO。

    3、例子

    FIFO的通信方式类似于在进程中使用文件来传输数据,只不过FIFO类型文件同时具有管道的特性。在数据读出时,FIFO管道中同时清除数据,并且“先进先出”。下面的例子演示了使用 FIFO 进行 IPC 的过程:

    write_fifo.c

    复制代码

     1 #include<stdio.h>
     2 #include<stdlib.h>   // exit
     3 #include<fcntl.h>    // O_WRONLY
     4 #include<sys/stat.h>
     5 #include<time.h>     // time
     6 
     7 int main()
     8 {
     9     int fd;
    10     int n, i;
    11     char buf[1024];
    12     time_t tp;
    13 
    14     printf("I am %d process.\n", getpid()); // 说明进程ID
    15     
    16     if((fd = open("fifo1", O_WRONLY)) < 0) // 以写打开一个FIFO 
    17     {
    18         perror("Open FIFO Failed");
    19         exit(1);
    20     }
    21 
    22     for(i=0; i<10; ++i)
    23     {
    24         time(&tp);  // 取系统当前时间
    25         n=sprintf(buf,"Process %d's time is %s",getpid(),ctime(&tp));
    26         printf("Send message: %s", buf); // 打印
    27         if(write(fd, buf, n+1) < 0)  // 写入到FIFO中
    28         {
    29             perror("Write FIFO Failed");
    30             close(fd);
    31             exit(1);
    32         }
    33         sleep(1);  // 休眠1秒
    34     }
    35 
    36     close(fd);  // 关闭FIFO文件
    37     return 0;
    38 }

    复制代码

    read_fifo.c

    复制代码

     1 #include<stdio.h>
     2 #include<stdlib.h>
     3 #include<errno.h>
     4 #include<fcntl.h>
     5 #include<sys/stat.h>
     6 
     7 int main()
     8 {
     9     int fd;
    10     int len;
    11     char buf[1024];
    12 
    13     if(mkfifo("fifo1", 0666) < 0 && errno!=EEXIST) // 创建FIFO管道
    14         perror("Create FIFO Failed");
    15 
    16     if((fd = open("fifo1", O_RDONLY)) < 0)  // 以读打开FIFO
    17     {
    18         perror("Open FIFO Failed");
    19         exit(1);
    20     }
    21     
    22     while((len = read(fd, buf, 1024)) > 0) // 读取FIFO管道
    23         printf("Read message: %s", buf);
    24 
    25     close(fd);  // 关闭FIFO文件
    26     return 0;
    27 }

    复制代码

    在两个终端里用 gcc 分别编译运行上面两个文件,可以看到输出结果如下:

    复制代码

     1 [cheesezh@localhost]$ ./write_fifo 
     2 I am 5954 process.
     3 Send message: Process 5954's time is Mon Apr 20 12:37:28 2015
     4 Send message: Process 5954's time is Mon Apr 20 12:37:29 2015
     5 Send message: Process 5954's time is Mon Apr 20 12:37:30 2015
     6 Send message: Process 5954's time is Mon Apr 20 12:37:31 2015
     7 Send message: Process 5954's time is Mon Apr 20 12:37:32 2015
     8 Send message: Process 5954's time is Mon Apr 20 12:37:33 2015
     9 Send message: Process 5954's time is Mon Apr 20 12:37:34 2015
    10 Send message: Process 5954's time is Mon Apr 20 12:37:35 2015
    11 Send message: Process 5954's time is Mon Apr 20 12:37:36 2015
    12 Send message: Process 5954's time is Mon Apr 20 12:37:37 2015

    复制代码

     

    复制代码

     1 [cheesezh@localhost]$ ./read_fifo 
     2 Read message: Process 5954's time is Mon Apr 20 12:37:28 2015
     3 Read message: Process 5954's time is Mon Apr 20 12:37:29 2015
     4 Read message: Process 5954's time is Mon Apr 20 12:37:30 2015
     5 Read message: Process 5954's time is Mon Apr 20 12:37:31 2015
     6 Read message: Process 5954's time is Mon Apr 20 12:37:32 2015
     7 Read message: Process 5954's time is Mon Apr 20 12:37:33 2015
     8 Read message: Process 5954's time is Mon Apr 20 12:37:34 2015
     9 Read message: Process 5954's time is Mon Apr 20 12:37:35 2015
    10 Read message: Process 5954's time is Mon Apr 20 12:37:36 2015
    11 Read message: Process 5954's time is Mon Apr 20 12:37:37 2015

    复制代码

    上述例子可以扩展成 客户进程—服务器进程 通信的实例,write_fifo的作用类似于客户端,可以打开多个客户端向一个服务器发送请求信息,read_fifo类似于服务器,它适时监控着FIFO的读端,当有数据时,读出并进行处理,但是有一个关键的问题是,每一个客户端必须预先知道服务器提供的FIFO接口,下图显示了这种安排:

    三、消息队列

    消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。

    1、特点

    1. 消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级

    2. 消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。

    3. 消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。

    2、原型

    复制代码

    1 #include <sys/msg.h>
    2 // 创建或打开消息队列:成功返回队列ID,失败返回-1
    3 int msgget(key_t key, int flag);
    4 // 添加消息:成功返回0,失败返回-1
    5 int msgsnd(int msqid, const void *ptr, size_t size, int flag);
    6 // 读取消息:成功返回消息数据的长度,失败返回-1
    7 int msgrcv(int msqid, void *ptr, size_t size, long type,int flag);
    8 // 控制消息队列:成功返回0,失败返回-1
    9 int msgctl(int msqid, int cmd, struct msqid_ds *buf);

    复制代码

    在以下两种情况下,msgget将创建一个新的消息队列:

    • 如果没有与键值key相对应的消息队列,并且flag中包含了IPC_CREAT标志位。
    • key参数为IPC_PRIVATE

    函数msgrcv在读取消息队列时,type参数有下面几种情况:

    • type == 0,返回队列中的第一个消息;
    • type > 0,返回队列中消息类型为 type 的第一个消息;
    • type < 0,返回队列中消息类型值小于或等于 type 绝对值的消息,如果有多个,则取类型值最小的消息。

    可以看出,type值非 0 时用于以非先进先出次序读消息。也可以把 type 看做优先级的权值。(其他的参数解释,请自行Google之)

    3、例子

    下面写了一个简单的使用消息队列进行IPC的例子,服务端程序一直在等待特定类型的消息,当收到该类型的消息以后,发送另一种特定类型的消息作为反馈,客户端读取该反馈并打印出来。

    msg_server.c

    复制代码

     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <sys/msg.h>
     4 
     5 // 用于创建一个唯一的key
     6 #define MSG_FILE "/etc/passwd"
     7 
     8 // 消息结构
     9 struct msg_form {
    10     long mtype;
    11     char mtext[256];
    12 };
    13 
    14 int main()
    15 {
    16     int msqid;
    17     key_t key;
    18     struct msg_form msg;
    19     
    20     // 获取key值
    21     if((key = ftok(MSG_FILE,'z')) < 0)
    22     {
    23         perror("ftok error");
    24         exit(1);
    25     }
    26 
    27     // 打印key值
    28     printf("Message Queue - Server key is: %d.\n", key);
    29 
    30     // 创建消息队列
    31     if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
    32     {
    33         perror("msgget error");
    34         exit(1);
    35     }
    36 
    37     // 打印消息队列ID及进程ID
    38     printf("My msqid is: %d.\n", msqid);
    39     printf("My pid is: %d.\n", getpid());
    40 
    41     // 循环读取消息
    42     for(;;) 
    43     {
    44         msgrcv(msqid, &msg, 256, 888, 0);// 返回类型为888的第一个消息
    45         printf("Server: receive msg.mtext is: %s.\n", msg.mtext);
    46         printf("Server: receive msg.mtype is: %d.\n", msg.mtype);
    47 
    48         msg.mtype = 999; // 客户端接收的消息类型
    49         sprintf(msg.mtext, "hello, I'm server %d", getpid());
    50         msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
    51     }
    52     return 0;
    53 }

    复制代码

    msg_client.c

    复制代码

     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <sys/msg.h>
     4 
     5 // 用于创建一个唯一的key
     6 #define MSG_FILE "/etc/passwd"
     7 
     8 // 消息结构
     9 struct msg_form {
    10     long mtype;
    11     char mtext[256];
    12 };
    13 
    14 int main()
    15 {
    16     int msqid;
    17     key_t key;
    18     struct msg_form msg;
    19 
    20     // 获取key值
    21     if ((key = ftok(MSG_FILE, 'z')) < 0) 
    22     {
    23         perror("ftok error");
    24         exit(1);
    25     }
    26 
    27     // 打印key值
    28     printf("Message Queue - Client key is: %d.\n", key);
    29 
    30     // 打开消息队列
    31     if ((msqid = msgget(key, IPC_CREAT|0777)) == -1) 
    32     {
    33         perror("msgget error");
    34         exit(1);
    35     }
    36 
    37     // 打印消息队列ID及进程ID
    38     printf("My msqid is: %d.\n", msqid);
    39     printf("My pid is: %d.\n", getpid());
    40 
    41     // 添加消息,类型为888
    42     msg.mtype = 888;
    43     sprintf(msg.mtext, "hello, I'm client %d", getpid());
    44     msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
    45 
    46     // 读取类型为777的消息
    47     msgrcv(msqid, &msg, 256, 999, 0);
    48     printf("Client: receive msg.mtext is: %s.\n", msg.mtext);
    49     printf("Client: receive msg.mtype is: %d.\n", msg.mtype);
    50     return 0;
    51 }

    复制代码

    四、信号量

    信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。

    1、特点

    1. 信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。

    2. 信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。

    3. 每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。

    4. 支持信号量组。

    2、原型

    最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。

    Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。

    复制代码

    1 #include <sys/sem.h>
    2 // 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1
    3 int semget(key_t key, int num_sems, int sem_flags);
    4 // 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1
    5 int semop(int semid, struct sembuf semoparray[], size_t numops);  
    6 // 控制信号量的相关信息
    7 int semctl(int semid, int sem_num, int cmd, ...);

    复制代码

    semget创建新的信号量集合时,必须指定集合中信号量的个数(即num_sems),通常为1; 如果是引用一个现有的集合,则将num_sems指定为 0 。

    semop函数中,sembuf结构的定义如下:

    复制代码

    1 struct sembuf 
    2 {
    3     short sem_num; // 信号量组中对应的序号,0~sem_nums-1
    4     short sem_op;  // 信号量值在一次操作中的改变量
    5     short sem_flg; // IPC_NOWAIT, SEM_UNDO
    6 }

    复制代码

    其中 sem_op 是一次操作中的信号量的改变量:

    • sem_op > 0,表示进程释放相应的资源数,将 sem_op 的值加到信号量的值上。如果有进程正在休眠等待此信号量,则换行它们。

    • sem_op < 0,请求 sem_op 的绝对值的资源。

      • 如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。
      • 当相应的资源数不能满足请求时,这个操作与sem_flg有关。
        • sem_flg 指定IPC_NOWAIT,则semop函数出错返回EAGAIN
        • sem_flg 没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
          1. 当相应的资源数可以满足请求,此信号量的semncnt值减1,该信号量的值减去sem_op的绝对值。成功返回;
          2. 此信号量被删除,函数smeop出错返回EIDRM;
          3. 进程捕捉到信号,并从信号处理函数返回,此情况下将此信号量的semncnt值减1,函数semop出错返回EINTR
    • sem_op == 0,进程阻塞直到信号量的相应值为0:

      • 当信号量已经为0,函数立即返回。
      • 如果信号量的值不为0,则依据sem_flg决定函数动作:
        • sem_flg指定IPC_NOWAIT,则出错返回EAGAIN
        • sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
          1. 信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;
          2. 此信号量被删除,函数smeop出错返回EIDRM;
          3. 进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR

    semctl函数中的命令有多种,这里就说两个常用的:

    • SETVAL:用于初始化信号量为一个已知的值。所需要的值作为联合semun的val成员来传递。在信号量第一次使用之前需要设置信号量。
    • IPC_RMID:删除一个信号量集合。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。

    3、例子

    复制代码

      1 #include<stdio.h>
      2 #include<stdlib.h>
      3 #include<sys/sem.h>
      4 
      5 // 联合体,用于semctl初始化
      6 union semun
      7 {
      8     int              val; /*for SETVAL*/
      9     struct semid_ds *buf;
     10     unsigned short  *array;
     11 };
     12 
     13 // 初始化信号量
     14 int init_sem(int sem_id, int value)
     15 {
     16     union semun tmp;
     17     tmp.val = value;
     18     if(semctl(sem_id, 0, SETVAL, tmp) == -1)
     19     {
     20         perror("Init Semaphore Error");
     21         return -1;
     22     }
     23     return 0;
     24 }
     25 
     26 // P操作:
     27 //    若信号量值为1,获取资源并将信号量值-1 
     28 //    若信号量值为0,进程挂起等待
     29 int sem_p(int sem_id)
     30 {
     31     struct sembuf sbuf;
     32     sbuf.sem_num = 0; /*序号*/
     33     sbuf.sem_op = -1; /*P操作*/
     34     sbuf.sem_flg = SEM_UNDO;
     35 
     36     if(semop(sem_id, &sbuf, 1) == -1)
     37     {
     38         perror("P operation Error");
     39         return -1;
     40     }
     41     return 0;
     42 }
     43 
     44 // V操作:
     45 //    释放资源并将信号量值+1
     46 //    如果有进程正在挂起等待,则唤醒它们
     47 int sem_v(int sem_id)
     48 {
     49     struct sembuf sbuf;
     50     sbuf.sem_num = 0; /*序号*/
     51     sbuf.sem_op = 1;  /*V操作*/
     52     sbuf.sem_flg = SEM_UNDO;
     53 
     54     if(semop(sem_id, &sbuf, 1) == -1)
     55     {
     56         perror("V operation Error");
     57         return -1;
     58     }
     59     return 0;
     60 }
     61 
     62 // 删除信号量集
     63 int del_sem(int sem_id)
     64 {
     65     union semun tmp;
     66     if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)
     67     {
     68         perror("Delete Semaphore Error");
     69         return -1;
     70     }
     71     return 0;
     72 }
     73 
     74 
     75 int main()
     76 {
     77     int sem_id;  // 信号量集ID
     78     key_t key;  
     79     pid_t pid;
     80 
     81     // 获取key值
     82     if((key = ftok(".", 'z')) < 0)
     83     {
     84         perror("ftok error");
     85         exit(1);
     86     }
     87 
     88     // 创建信号量集,其中只有一个信号量
     89     if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)
     90     {
     91         perror("semget error");
     92         exit(1);
     93     }
     94 
     95     // 初始化:初值设为0资源被占用
     96     init_sem(sem_id, 0);
     97 
     98     if((pid = fork()) == -1)
     99         perror("Fork Error");
    100     else if(pid == 0) /*子进程*/ 
    101     {
    102         sleep(2);
    103         printf("Process child: pid=%d\n", getpid());
    104         sem_v(sem_id);  /*释放资源*/
    105     }
    106     else  /*父进程*/
    107     {
    108         sem_p(sem_id);   /*等待资源*/
    109         printf("Process father: pid=%d\n", getpid());
    110         sem_v(sem_id);   /*释放资源*/
    111         del_sem(sem_id); /*删除信号量集*/
    112     }
    113     return 0;
    114 }

    复制代码

    上面的例子如果不加信号量,则父进程会先执行完毕。这里加了信号量让父进程等待子进程执行完以后再执行。

    五、共享内存

    共享内存(Shared Memory),指两个或多个进程共享一个给定的存储区。

    1、特点

    1. 共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。

    2. 因为多个进程可以同时操作,所以需要进行同步。

    3. 信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。

    2、原型

    复制代码

    1 #include <sys/shm.h>
    2 // 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1
    3 int shmget(key_t key, size_t size, int flag);
    4 // 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1
    5 void *shmat(int shm_id, const void *addr, int flag);
    6 // 断开与共享内存的连接:成功返回0,失败返回-1
    7 int shmdt(void *addr); 
    8 // 控制共享内存的相关信息:成功返回0,失败返回-1
    9 int shmctl(int shm_id, int cmd, struct shmid_ds *buf);

    复制代码

    当用shmget函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为0 。

    当一段共享内存被创建以后,它并不能被任何进程访问。必须使用shmat函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。

    shmdt函数是用来断开shmat建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。

    shmctl函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID(从系统中删除该共享内存)。

    3、例子

    下面这个例子,使用了【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信。

    • 共享内存用来传递数据;
    • 信号量用来同步;
    • 消息队列用来 在客户端修改了共享内存后 通知服务器读取。

    server.c

    复制代码

      1 #include<stdio.h>
      2 #include<stdlib.h>
      3 #include<sys/shm.h>  // shared memory
      4 #include<sys/sem.h>  // semaphore
      5 #include<sys/msg.h>  // message queue
      6 #include<string.h>   // memcpy
      7 
      8 // 消息队列结构
      9 struct msg_form {
     10     long mtype;
     11     char mtext;
     12 };
     13 
     14 // 联合体,用于semctl初始化
     15 union semun
     16 {
     17     int              val; /*for SETVAL*/
     18     struct semid_ds *buf;
     19     unsigned short  *array;
     20 };
     21 
     22 // 初始化信号量
     23 int init_sem(int sem_id, int value)
     24 {
     25     union semun tmp;
     26     tmp.val = value;
     27     if(semctl(sem_id, 0, SETVAL, tmp) == -1)
     28     {
     29         perror("Init Semaphore Error");
     30         return -1;
     31     }
     32     return 0;
     33 }
     34 
     35 // P操作:
     36 //  若信号量值为1,获取资源并将信号量值-1 
     37 //  若信号量值为0,进程挂起等待
     38 int sem_p(int sem_id)
     39 {
     40     struct sembuf sbuf;
     41     sbuf.sem_num = 0; /*序号*/
     42     sbuf.sem_op = -1; /*P操作*/
     43     sbuf.sem_flg = SEM_UNDO;
     44 
     45     if(semop(sem_id, &sbuf, 1) == -1)
     46     {
     47         perror("P operation Error");
     48         return -1;
     49     }
     50     return 0;
     51 }
     52 
     53 // V操作:
     54 //  释放资源并将信号量值+1
     55 //  如果有进程正在挂起等待,则唤醒它们
     56 int sem_v(int sem_id)
     57 {
     58     struct sembuf sbuf;
     59     sbuf.sem_num = 0; /*序号*/
     60     sbuf.sem_op = 1;  /*V操作*/
     61     sbuf.sem_flg = SEM_UNDO;
     62 
     63     if(semop(sem_id, &sbuf, 1) == -1)
     64     {
     65         perror("V operation Error");
     66         return -1;
     67     }
     68     return 0;
     69 }
     70 
     71 // 删除信号量集
     72 int del_sem(int sem_id)
     73 {
     74     union semun tmp;
     75     if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)
     76     {
     77         perror("Delete Semaphore Error");
     78         return -1;
     79     }
     80     return 0;
     81 }
     82 
     83 // 创建一个信号量集
     84 int creat_sem(key_t key)
     85 {
     86     int sem_id;
     87     if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)
     88     {
     89         perror("semget error");
     90         exit(-1);
     91     }
     92     init_sem(sem_id, 1);  /*初值设为1资源未占用*/
     93     return sem_id;
     94 }
     95 
     96 
     97 int main()
     98 {
     99     key_t key;
    100     int shmid, semid, msqid;
    101     char *shm;
    102     char data[] = "this is server";
    103     struct shmid_ds buf1;  /*用于删除共享内存*/
    104     struct msqid_ds buf2;  /*用于删除消息队列*/
    105     struct msg_form msg;  /*消息队列用于通知对方更新了共享内存*/
    106 
    107     // 获取key值
    108     if((key = ftok(".", 'z')) < 0)
    109     {
    110         perror("ftok error");
    111         exit(1);
    112     }
    113 
    114     // 创建共享内存
    115     if((shmid = shmget(key, 1024, IPC_CREAT|0666)) == -1)
    116     {
    117         perror("Create Shared Memory Error");
    118         exit(1);
    119     }
    120 
    121     // 连接共享内存
    122     shm = (char*)shmat(shmid, 0, 0);
    123     if((int)shm == -1)
    124     {
    125         perror("Attach Shared Memory Error");
    126         exit(1);
    127     }
    128 
    129 
    130     // 创建消息队列
    131     if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
    132     {
    133         perror("msgget error");
    134         exit(1);
    135     }
    136 
    137     // 创建信号量
    138     semid = creat_sem(key);
    139     
    140     // 读数据
    141     while(1)
    142     {
    143         msgrcv(msqid, &msg, 1, 888, 0); /*读取类型为888的消息*/
    144         if(msg.mtext == 'q')  /*quit - 跳出循环*/ 
    145             break;
    146         if(msg.mtext == 'r')  /*read - 读共享内存*/
    147         {
    148             sem_p(semid);
    149             printf("%s\n",shm);
    150             sem_v(semid);
    151         }
    152     }
    153 
    154     // 断开连接
    155     shmdt(shm);
    156 
    157     /*删除共享内存、消息队列、信号量*/
    158     shmctl(shmid, IPC_RMID, &buf1);
    159     msgctl(msqid, IPC_RMID, &buf2);
    160     del_sem(semid);
    161     return 0;
    162 }

    复制代码

    client.c

    复制代码

      1 #include<stdio.h>
      2 #include<stdlib.h>
      3 #include<sys/shm.h>  // shared memory
      4 #include<sys/sem.h>  // semaphore
      5 #include<sys/msg.h>  // message queue
      6 #include<string.h>   // memcpy
      7 
      8 // 消息队列结构
      9 struct msg_form {
     10     long mtype;
     11     char mtext;
     12 };
     13 
     14 // 联合体,用于semctl初始化
     15 union semun
     16 {
     17     int              val; /*for SETVAL*/
     18     struct semid_ds *buf;
     19     unsigned short  *array;
     20 };
     21 
     22 // P操作:
     23 //  若信号量值为1,获取资源并将信号量值-1 
     24 //  若信号量值为0,进程挂起等待
     25 int sem_p(int sem_id)
     26 {
     27     struct sembuf sbuf;
     28     sbuf.sem_num = 0; /*序号*/
     29     sbuf.sem_op = -1; /*P操作*/
     30     sbuf.sem_flg = SEM_UNDO;
     31 
     32     if(semop(sem_id, &sbuf, 1) == -1)
     33     {
     34         perror("P operation Error");
     35         return -1;
     36     }
     37     return 0;
     38 }
     39 
     40 // V操作:
     41 //  释放资源并将信号量值+1
     42 //  如果有进程正在挂起等待,则唤醒它们
     43 int sem_v(int sem_id)
     44 {
     45     struct sembuf sbuf;
     46     sbuf.sem_num = 0; /*序号*/
     47     sbuf.sem_op = 1;  /*V操作*/
     48     sbuf.sem_flg = SEM_UNDO;
     49 
     50     if(semop(sem_id, &sbuf, 1) == -1)
     51     {
     52         perror("V operation Error");
     53         return -1;
     54     }
     55     return 0;
     56 }
     57 
     58 
     59 int main()
     60 {
     61     key_t key;
     62     int shmid, semid, msqid;
     63     char *shm;
     64     struct msg_form msg;
     65     int flag = 1; /*while循环条件*/
     66 
     67     // 获取key值
     68     if((key = ftok(".", 'z')) < 0)
     69     {
     70         perror("ftok error");
     71         exit(1);
     72     }
     73 
     74     // 获取共享内存
     75     if((shmid = shmget(key, 1024, 0)) == -1)
     76     {
     77         perror("shmget error");
     78         exit(1);
     79     }
     80 
     81     // 连接共享内存
     82     shm = (char*)shmat(shmid, 0, 0);
     83     if((int)shm == -1)
     84     {
     85         perror("Attach Shared Memory Error");
     86         exit(1);
     87     }
     88 
     89     // 创建消息队列
     90     if ((msqid = msgget(key, 0)) == -1)
     91     {
     92         perror("msgget error");
     93         exit(1);
     94     }
     95 
     96     // 获取信号量
     97     if((semid = semget(key, 0, 0)) == -1)
     98     {
     99         perror("semget error");
    100         exit(1);
    101     }
    102     
    103     // 写数据
    104     printf("***************************************\n");
    105     printf("*                 IPC                 *\n");
    106     printf("*    Input r to send data to server.  *\n");
    107     printf("*    Input q to quit.                 *\n");
    108     printf("***************************************\n");
    109     
    110     while(flag)
    111     {
    112         char c;
    113         printf("Please input command: ");
    114         scanf("%c", &c);
    115         switch(c)
    116         {
    117             case 'r':
    118                 printf("Data to send: ");
    119                 sem_p(semid);  /*访问资源*/
    120                 scanf("%s", shm);
    121                 sem_v(semid);  /*释放资源*/
    122                 /*清空标准输入缓冲区*/
    123                 while((c=getchar())!='\n' && c!=EOF);
    124                 msg.mtype = 888;  
    125                 msg.mtext = 'r';  /*发送消息通知服务器读数据*/
    126                 msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
    127                 break;
    128             case 'q':
    129                 msg.mtype = 888;
    130                 msg.mtext = 'q';
    131                 msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
    132                 flag = 0;
    133                 break;
    134             default:
    135                 printf("Wrong input!\n");
    136                 /*清空标准输入缓冲区*/
    137                 while((c=getchar())!='\n' && c!=EOF);
    138         }
    139     }
    140 
    141     // 断开连接
    142     shmdt(shm);
    143 
    144     return 0;
    145 }

    复制代码

    注意:当scanf()输入字符或字符串时,缓冲区中遗留下了\n,所以每次输入操作后都需要清空标准输入的缓冲区。但是由于 gcc 编译器不支持fflush(stdin)(它只是标准C的扩展),所以我们使用了替代方案:

    1 while((c=getchar())!='\n' && c!=EOF);

    参考资料:http://songlee24.github.io/2015/04/21/linux-IPC/

     

    传送门:

     

    几种进程间的通信方式

    进程间通信(IPC)介绍

    展开全文
  • 进程间通信的七种方式(一)

    千次阅读 2018-09-27 14:50:16
    ******************day05进程间通信********************** 进程间的7种通信方式  传统的通信方式:  有名管道  无名管道  ...
  • 几种常见进程间通信(IPC)方式-共享存储 前言 进程间通信是指在不同进程之间传播或交换信息,在Linux环境下,进程地址空间相互独立,每个进程各自有不同的用户地址空间,进程之间不能相互访问。必须通过内核才能...
  • 进程间通信方式有哪些?

    千次阅读 2019-05-07 08:56:22
    进程能够单独运行并且完成一些任务,但是也经常免不了和其他进程传输数据或互相通知消息,即需要进行通信,本文将简单介绍一些进程之间相互通信的技术--进程间通信(InterProcess Communication,IPC)。由于篇幅...
  • 第三篇:进程间通信

    千次阅读 2017-07-13 23:45:12
    本文出自Inter-Process Communication in a Microservices Architecture,作者 Chris Richardson, 写于2015年...第二篇文章阐述了应用如何通过API代理网关与微服务通信。本文我们将会了解一下系统中的服务之间如何进行
  • 进程间8种通信方式详解

    万次阅读 多人点赞 2016-04-20 15:34:57
    1 无名管道通信无名管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。2 高级管道通信高级管道(popen):将另一个程序当做一...
  • 在Android系统中,每一个应用程序都是由一些Activity和Service组成的,这些Activity和Service有可能运行在同一个进程中,也有可能运行在不同的进程中。...这就是本文中要介绍的Binder进程间通信机制了。
  • Linux进程间通信——使用共享内存

    万次阅读 多人点赞 2013-08-24 10:26:39
    下面将讲解进程间通信的另一种方式,使用共享内存。 一、什么是共享内存 顾名思义,共享内存就是允许两个不相关的进程访问同一个逻辑内存。共享内存是在两个正在运行的进程之间共享和传递数据的一种非常有效的方式...
  • python进程间通信的秘密

    万次阅读 2018-09-17 19:14:13
    # 进程间通信IPC # 管道 from multiprocessing import Process, Pipe # 默认双向 # False时为只读(只收) 只写(只发) fd, fw = Pipe(duplex=True) def zijinc(): print(‘进程被调用’) fw.send(‘我是紫禁城’) ...
  • Linux进程间通信——使用信号

    万次阅读 多人点赞 2013-08-21 00:24:54
    用过Windows的我们都知道,当我们无法正常结束一个程序时,可以用任务管理器强制结束这个进程,但这其实是怎么实现的呢?同样的功能在Linux上是通过生成信号和捕获信号来实现的,运行中的进程捕获到这个信号然后作出...
  • Linux进程间通信——使用信号量

    万次阅读 多人点赞 2013-08-24 00:12:54
    这篇文章将讲述别一种进程间通信的机制——信号量。注意请不要把它与之前所说的信号混淆起来,信号与信号量是不同的两种事物。下面就进入信号量的讲解。 一、什么是信号量 为了防止出现因多个程序同时访问一个共享...
  • Linux进程间通信——使用消息队列

    万次阅读 多人点赞 2013-08-25 00:09:57
    下面来说说如何用不用消息队列来进行进程间通信,消息队列与命名管道有很多相似之处。 一、什么是消息队列 消息队列提供了一种从一个进程向另一个进程发送一个数据块的方法。 每个数据块都被认为含有一个类型,...
  • 进程间通信——共享内存(Shared Memory)

    万次阅读 多人点赞 2018-04-16 16:19:17
    共享内存是System V版本的最后一个进程间通信方式。共享内存,顾名思义就是允许两个不相关的进程访问同一个逻辑内存,共享内存是两个正在运行的进程之间共享和传递数据的一种非常有效的方式。不同进程之间共享的内存...
  • 进程间通信的8种方式

    万次阅读 2018-11-12 10:51:34
    前言: 进程通信: 每个进程各自有不同的用户地址空间,任何一个进程的全局变量在另一个进程中都看不到,所以进程之间要交换...进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信...
  • 进程间通信

    千次阅读 2014-06-05 20:57:58
    一、进程间通信概述 进程通信有如下一些目的: A、数据传输:一个进程需要将它的数据发送给另一个进程,发送的数据量在一个字节到几M字节之间 B、共享数据:多个进程想要操作共享数据,一个进程对共享数据的修改...
  • 进程间通信系列 之 信号实例

    千次阅读 2013-11-13 20:08:38
    信号是在软件层次上对中断机制的一种模拟,在原理上,一个进程收到一个信号与处理器收到一个中断请求可以说是一样...信号是进程间通信机制中唯一的异步通信机制,可以看作是异步通知,通知接收信号的进程有哪些事情发生了。

空空如也

1 2 3 4 5 ... 20
收藏数 258,168
精华内容 103,267
关键字:

进程间通信