2013-12-23 18:30:53 a200800170331 阅读数 2110
就我看来,个人觉得图像处理的就业还是不错的。首先可以把图像看成二维、三维或者更高维的信号,从这个意义上来说,图像处理是整个信号处理里面就业形势最好的,因为你不仅要掌握(一维)信号处理的基本知识,也要掌握图像处理(二维或者高维信号处理)的知识。其次,图像处理是计算机视觉和视频处理的基础,掌握好了图像处理的基本知识,就业时就可以向这些方向发展。目前的模式识别,大部分也都是图像模式识别。在实际应用场合,采集的信息很多都是图像信息,比如指纹、条码、人脸、虹膜、车辆等等。说到应用场合,千万不能忘了医学图像这一块,如果有医学图像处理的背景,去一些医疗器械公司或者医疗软件公司也是不错的选择。图像处理对编程的要求比较高,如果编程很厉害,当然就业也多了一个选择方向,并不一定要局限在图像方向。

下面谈谈我所知道的一些公司信息,不全,仅仅是我所了解到的或者我所感兴趣的,实际远远不止这么多。

搜索方向
基于内容的图像或视频搜索是很多搜索公司研究的热点。要想进入这个领域,
必须有很强的编程能力,很好的图像处理和模式识别的背景。要求高待遇自然就不错,目前这方面的代表公司有微软、google、yahoo和百度,个个鼎鼎大名。

医学图像方向
目前在医疗器械方向主要是几个大企业在竞争,来头都不小,其中包括Simens、GE、飞利浦和柯达,主要生产CT和MRI等医疗器材。由于医疗器械的主要功能是成像,必然涉及到对图像的处理,做图像处理的很有机会进入这些公司。它们在国内都设有研发中心,simens的在上海和深圳,GE和柯达都在上海,飞利浦的在沈阳。由于医疗市场是一个没有完全开发的市场,而一套医疗设备的价格是非常昂贵的,所以在这些地方的待遇都还可以,前景也看好。国内也有一些这样的企业比如深圳安科和迈瑞

计算机视觉和模式识别方向
我没去调研过有哪些公司在做,但肯定不少,比如指纹识别、人脸识别、虹膜识别。还有一个很大的方向是车牌识别,这个我倒是知道有一个公司高德威智能交通似乎做的很不错的样子。目前视频监控是一个热点问题,做跟踪和识别的可以在这个方向找到一席之地。
上海法视特位于上海张江高科技园区,在视觉和识别方面做的不错。北京的我也知道两个公司:大恒和凌云,都是以图像作为研发的主体。

视频方向
一般的高校或者研究所侧重在标准的制定和修改以及技术创新方面,而公司则侧重在编码解码的硬件实现方面。一般这些公司要求是熟悉或者精通MPEG、H.264或者AVS,选择了这个方向,只要做的还不错,基本就不愁饭碗。由于这不是我所感兴趣的方向,所以这方面的公司的信息我没有收集,但平常在各个bbs或者各种招聘网站经常看到。
我所知道的两个公司:诺基亚和pixelworks

其他
其实一般来说,只要涉及到成像或者图像的基本都要图像处理方面的人。比方说一个成像设备,在输出图像之前需要对原始图像进行增强或者去噪处理,存储时需要对图像进行压缩,成像之后需要对图像内容进行自动分析,这些内容都是图像处理的范畴。下面列举一些与图像有关或者招聘时明确说明需要图像处理方面人才的公司:
上海豪威集成电路有限公司([url]www.ovt.com.cn[/url])
中芯微
摩托罗拉上海研究院
威盛(VIA)
松下
索尼
清华同方
三星

所有与图像(静止或者运动图像)有关的公司都是一种选择。比如数码相机、显微镜成像、超声成像、工业机器人控制、显示器、电视、遥感等等,都可以作为求职方向。

要求:
1、外语。如果进外企,外语的重要性不言而喻。一般外企的第一轮面试都是英语口语面试。
2、编程。这方面尤以C++为重,很多公司的笔试都是考c++知识。
3、专业水平。如果要找专业相关的工作,研究生期间的研究经历和发表的论文就显的比较重要。
4、知识面的宽度。我觉得在研究生期间,除了做好自己的研究方向之外,扩宽一下知识面也有很大的帮助,当然这个知识面指的是图像处理、计算机视觉和模式识别,知识面越宽,就业时的选择就会越多。

图像处理方向毕业的就业面非常广,而且待遇在应届生应该是中上等。其实还是一句话,能力决定一切。只要研究生三年没有白过,根本不愁找不到好工作。祝所有正在读研或者即将读研的朋友将来都能有一份满意的工作
2012-04-13 23:06:33 tzgj2007 阅读数 1811
就我看来,个人觉得图像处理的就业还是不错的。首先可以把图像看成二维、三维或者更高维的信号,从这个意义上来说,图像处理是整个信号处理里面就业形势最好的,因为你不仅要掌握(一维)信号处理的基本知识,也要掌握图像处理(二维或者高维信号处理)的知识。其次,图像处理是计算机视觉和视频处理的基础,掌握好了图像处理的基本知识,就业时就可以向这些方向发展。目前的模式识别,大部分也都是图像模式识别。在实际应用场合,采集的信息很多都是图像信息,比如指纹、条码、人脸、虹膜、车辆等等。说到应用场合,千万不能忘了医学图像这一块,如果有医学图像处理的背景,去一些医疗器械公司或者医疗软件公司也是不错的选择。图像处理对编程的要求比较高,如果编程很厉害,当然就业也多了一个选择方向,并不一定要局限在图像方向。

下面谈谈我所知道的一些公司信息,不全,仅仅是我所了解到的或者我所感兴趣的,实际远远不止这么多。

搜索方向
基于内容的图像或视频搜索是很多搜索公司研究的热点。要想进入这个领域,
必须有很强的编程能力,很好的图像处理和模式识别的背景。要求高待遇自然就不错,目前这方面的代表公司有微软、google、yahoo和百度,个个鼎鼎大名。

医学图像方向
目前在医疗器械方向主要是几个大企业在竞争,来头都不小,其中包括Simens、GE、飞利浦和柯达,主要生产CT和MRI等医疗器材。由于医疗器械的主要功能是成像,必然涉及到对图像的处理,做图像处理的很有机会进入这些公司。它们在国内都设有研发中心,simens的在上海和深圳,GE和柯达都在上海,飞利浦的在沈阳。由于医疗市场是一个没有完全开发的市场,而一套医疗设备的价格是非常昂贵的,所以在这些地方的待遇都还可以,前景也看好。国内也有一些这样的企业比如深圳安科和迈瑞

计算机视觉和模式识别方向
我没去调研过有哪些公司在做,但肯定不少,比如指纹识别、人脸识别、虹膜识别。还有一个很大的方向是车牌识别,这个我倒是知道有一个公司高德威智能交通似乎做的很不错的样子。目前视频监控是一个热点问题,做跟踪和识别的可以在这个方向找到一席之地。
上海法视特位于上海张江高科技园区,在视觉和识别方面做的不错。北京的我也知道两个公司:大恒和凌云,都是以图像作为研发的主体。

视频方向
一般的高校或者研究所侧重在标准的制定和修改以及技术创新方面,而公司则侧重在编码解码的硬件实现方面。一般这些公司要求是熟悉或者精通MPEG、H.264或者AVS,选择了这个方向,只要做的还不错,基本就不愁饭碗。由于这不是我所感兴趣的方向,所以这方面的公司的信息我没有收集,但平常在各个bbs或者各种招聘网站经常看到。
我所知道的两个公司:诺基亚和pixelworks

其他
其实一般来说,只要涉及到成像或者图像的基本都要图像处理方面的人。比方说一个成像设备,在输出图像之前需要对原始图像进行增强或者去噪处理,存储时需要对图像进行压缩,成像之后需要对图像内容进行自动分析,这些内容都是图像处理的范畴。下面列举一些与图像有关或者招聘时明确说明需要图像处理方面人才的公司:
上海豪威集成电路有限公司([url]www.ovt.com.cn[/url])
中芯微
摩托罗拉上海研究院
威盛(VIA)
松下
索尼
清华同方
三星

所有与图像(静止或者运动图像)有关的公司都是一种选择。比如数码相机、显微镜成像、超声成像、工业机器人控制、显示器、电视、遥感等等,都可以作为求职方向。

要求:
1、外语。如果进外企,外语的重要性不言而喻。一般外企的第一轮面试都是英语口语面试。
2、编程。这方面尤以C++为重,很多公司的笔试都是考c++知识。
3、专业水平。如果要找专业相关的工作,研究生期间的研究经历和发表的论文就显的比较重要。
4、知识面的宽度。我觉得在研究生期间,除了做好自己的研究方向之外,扩宽一下知识面也有很大的帮助,当然这个知识面指的是图像处理、计算机视觉和模式识别,知识面越宽,就业时的选择就会越多。

图像处理方向毕业的就业面非常广,而且待遇在应届生应该是中上等。其实还是一句话,能力决定一切。只要研究生三年没有白过,根本不愁找不到好工作。祝所有正在读研或者即将读研的朋友将来都能有一份满意的工作
2015-10-30 22:05:33 cafucwxy 阅读数 33242
这个推荐答案被反复粘贴n遍。没有新意。应该让专业从业人员回答这个问题。刚好本人就是。。那个链接值得推荐,比较中肯。但是分析的还是太窄。
如果从人生整体规划上讲应该考虑一下问题:
1 现实所逼,你准备在哪个城市发展(买房,女友工作等等),该城市是否有充分的图像处理行业以供选择。如,北京上海深圳,北京的图像企业感觉占近半数江山。多年招聘的感觉。剩下的广州,武汉,成都也有为数不多的图像企业。像本人所在的城市,牛逼大学再多,学图像的再多不顶用,没行业没研究所从事图像方向。你个博士奈何。。学校的坑你更是进不去的。
2 学图像的研究生能从事本专业的不到15%,这个是我身边的统计数据。图像分析受环境影响比较大,如光照。这个另说了,就是比较难又不太可靠。所以作为一个检测手段还有很多路要走。如果你没有在做图像的公司实习并取得信任那么你用图像处理就业的可能性大为下降。全世界每年能实用的图像算法能有多少,那些发paper的同志们,你们自己知道自己算法的约束性。就是state of the art的paper,适用的场景又能有多少。所以不要迷信自己的算法有多牛逼。好好提高自己的编程水平,没事看看图形方面的东西(不要问我图像,图形有啥不同。。),玩玩并行运算,嵌入式,扩展下自己的就业面。
3 到主观的地方了,谈谈正面的。公司缺人么?每个公司都缺。但你是否能胜任它职位所需要的岗位。回到图像上来说,人类获取信息80%的信息都是通过图像获取的,你说图像重要么。图像处理,模式识别的方向的确相对通讯电子是窄,但是你说造原子弹的科学家就业窄不。。相信自己的专业,时间越长越不可替代,可以走技术专家路线,比较自由。自动化,人工智能是今后发展的大方向,图像是个重要的手段。工作经验告诉我,图像处理这个东西不在人多,贵在精深。不要单干,一个小而精的团队战斗力是非常强悍的,但只是需要一两个人做图像算法的公司不建议去。掂量下自己有没有这个热情,头脑,数学功力,和沟通能力。如果你已经进入了相关企业,程序相关的东西可以再学习培养(看看应聘公司有这个前瞻性和魄力当然你要有头脑和数学底子),分析问题,解决问题的能力很重要,更重要的是提出问题。学习好的同学比较擅长前两项,而图像这个创新的工作更加看重提出问题,这个是创新思维的表现。这个可不是口号。当然,能提出问题取决于,你对问题研究的深度广度,最终取决于你对研究的兴趣。

最后谈谈图像处理研究的门类。
1医疗2识别类3零件检测4卫星图像。
总的说来医疗口的就业量比较大,企业相对比较多。对其他图像而言,医学图像标准化更好对外界影响小,不同设备间的差距也比较小。毕竟是诊断的凭据。所以你如果想跳槽(嘿嘿),同样类别算法基本不用删改都是适用的(注意知识产权哦)。
下来识别类,所有的文字,行人,车辆等等需要识别跟踪的物体。做好了发大财,譬如美国一家公司的指纹检测在911后,速度准确性最好。拿了政府大单,回报丰厚。
但是想做好谈何容易。。但,这个是本人最喜欢的,最有人工智能的感觉。这个是自动化类专业研究图像的最高形态。
3零件检测,包括一些食品包装类的异物检测。对于工业自动化也是很有前景的方向,有些甚至用于芯片级的检测,如果显微图像的话多涉及到亚像素及三维相关。
4卫星图像。一般国家需要,如果可能有些研究所有相关类别。公司的话,不太清楚
对了忘说了比较重要的一条。英语。这个不费话了。中文的paper可以做个科普,想做算法研究的话,你看不懂显然是不可以的。如果英文整体实力NB了,可以去些外企。客观上说,欧美的企业还是不错滴,重视人,创造,做算法有耐心。薪酬也比较丰厚。这类企业貌似上海那边比较多

综上,如果你没耐心看完,去找图像类的公司实习,这个前提是手上有一些做程序的功夫,这个真不难。。,玩玩opencv,然后自己就感觉出来了。还有积累人脉。这个也是极重要的。刚从学校出来的没有利害到一定程度,也没有工作经验,实习经验的重要性超乎想象。

劝一句,如果你对图像没有兴趣还是不要做下去。你也做不好。


各位学长学姐好!
今年被图形图像所录取,暑假前导师给了两个方向让我选择,参考的文献全是英语论文,伤不起啊。看过后 还是不太懂,在这里请教一下

方向 1、体数据建模 (需要学习的软件pov-ray,这个软件,中文教程都很少,自学 很吃力)
2、等几何分析 (需要学习的软件matlab,感觉这个太偏向数学了)
PS:导师是本科是数学专业出身,博士是 应用数学专业计算机辅助设计与图形

问题 1、请了解的大神 解释一下这两个方向,或者说说这两个方向毕业后能干啥
2、我也咨询过同一个导师的学姐,她说研究生的方向 和将来工作是无关的,问她为啥,她说 你来了就知道了。请知道的学长解释一下
3、导师坑不坑就不说了,要是不想跟导师的做,自学的话 在毕业时,会不会有大麻烦
4、将来毕业后想进互联网公司,学这些计算机辅助工程设计的方向 互联网公司有这些需求吗?


研究生学图形图像处理,就业可以有哪些选择?

按投票排序按时间排序

10 个回答


2019-03-28 09:08:44 Yvonnedan 阅读数 106

前两个礼拜弄出来的二维成像的处理:
(matlab)源代码3.28
clc; clear all; close all;
fidin=fopen(‘F:\上班的工具汇总\3.14 三维超声\3.14 采集水的图像数据\水经过降采样得到的数据\1.bin.txt’,‘rb’);
%% matlab读的数据转化为16位
A=fread(fidin,‘uint16’);%该语句的核心
A=A(1:232128);
B=reshape(A,[936,248]);
figure;
% imshow(B,[0,65535])
imtool(uint16(B));
imwrite(B,‘CB.jpg’)
d=B;
%% 进行坐标变换 3.25修改
%下面进行坐标变换,从直角坐标系转换到扇形坐标系下
%设新的图像的大小仍为原数据矩阵大小,则每线有m个数据,一共有n线
[m n] = size(d);
data = zeros(m,n);
data = data - 1;
%根据仪器构造,扫描角度为68°,设角度圆心到图像的起始半径为r(像素),整个扇形有效数据的半径为n+r(像素)
deltasita = 68/248/180pi;
Fsita = 68/180
pi;
r = 70;
Y = rcos(34/180pi);
X = fix(n/2);
for sita = deltasita:deltasita:Fsita
for i = 1:m
R = r + i;
alpha = (270-34)/180pi + sita;
x = R
cos(alpha);
y = R*sin(alpha);
x = fix(x + X);
y = -fix(y - Y);
if (x<1 || x>n) continue;
end
if (y<1 || y>m) continue;
end
if data(y,x) == -1
data(y,x) = d(i,fix(sita/deltasita));
end
end
end
imtool(uint16(data));
实验结果图:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20190328090710751.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow
_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1l2b25uZWRhbg==
,size_16,color_FFFFFF,t_70)

在这里插入图片描述

没有更多推荐了,返回首页