2018-09-19 21:02:54 bi_diu1368 阅读数 712
  • 机器学习算法实战——神秘奥妙的支持向量机

    支持向量机算法是机器学习的重要算法,如今已应用在图像处理、 语音识别和自然语言处理等方面。本课程详细讲解支持向量机的原理、相关概念、 推导过程和代码实战。包括:Logistic函数、最大化间隔、凸二次优化、核函数、 数据中的噪声点处理等知识。最后用了手写字分类实例,详细讲解了相关的代码实战。

    48 人正在学习 去看看 穆辉宇

    对噪声数字图像处理之前,必须首先了解数字图像中噪声的来源,产生机理及噪声的数学模型。系统的分析了CCD相机成像过程中的噪声组成,指出数字图像中主要的噪声种类包括模式噪声、暗电流噪声、光子噪声、读出噪声、热噪声、以及量化噪声,以下对各个噪声做具体说明。

  (1)模式噪声在数字图像成像过程中形成,相机传感器通过感知光子的强度和数量,转换为一定对应强度关系的电信号,在此过程中,受现代工艺水平的限制,还无法做到所有感光元件性能绝对一致统一,形成了图像获取过程中的噪声。

  (2)暗电流噪声指在没有入射光照条件下,对MCP两端施加电压信号,通道中输出的反向电流,可看作背景白噪声「sod,暗电流噪声对工作温度和制造工艺敏感,在低温条件下可忽略不计。

  (3)光子噪声指光子的离散性或粒子性所引起的噪声,即便光照功率恒定,每一时刻到达传感器的光子数量也是随机的,这种数量的变动造成了光子噪声。

  (4)读出噪声包括读出电路中各种电子元气件所具有的固有噪声和电路设计中引入的噪声。

  (5)热噪声存在于所有电子元器件及传输介质中,任何的放大电路都存在热噪声,减少热噪声最好的方法就是将电路至于极低的温度环境下,这在现实应用中是不可能实现的。

  (6)量化噪声是由于数字图像是经过模数电路量化转换的,在采样过程中存在信息的损失和近似误差。

    图像噪声降低了图像的视觉效果,影响和限制了后续其它图像处理算法的妙果,图像去噪己经成为图像处理领域中必不可少的一环。

 

2019-07-02 20:57:49 qq_37486501 阅读数 1054
  • 机器学习算法实战——神秘奥妙的支持向量机

    支持向量机算法是机器学习的重要算法,如今已应用在图像处理、 语音识别和自然语言处理等方面。本课程详细讲解支持向量机的原理、相关概念、 推导过程和代码实战。包括:Logistic函数、最大化间隔、凸二次优化、核函数、 数据中的噪声点处理等知识。最后用了手写字分类实例,详细讲解了相关的代码实战。

    48 人正在学习 去看看 穆辉宇

噪声分类:

  • 高斯噪声
  1. 是随机噪声, 服从高斯分布
  2. 主要特点表现为:麻点
  • 椒盐噪声
  1. 胡椒噪声、盐噪声
  2. 主要特点表现为:黑白点

噪声的描述

  1. 均方误差 MSE : MSE越大,失真率越大
  2. 峰值信噪比 PSNR: PSNR越大,失真度越小

图像平滑(去噪)

  1. 平滑的目的: 在表刘源是图像基本特征的前提下, 消除或衰减噪声的影响, 提高视觉效果

  2. 基础知识:
    (1): 滤波: 使用空间模版(滤波器)处理图像的过程
    (2): 模版与模版运算: 模版和邻域大小相同

  3. 常用图像平滑方法(空间平滑滤波):

  • 均值滤波 (邻域平均法)——线性空间滤波
    MATLAB实现均值滤波,见我的博客:
    https://blog.csdn.net/qq_37486501/article/details/80274928
    (1): 基本思想: 某像素点灰度值=邻域中所有像素灰度值平均值 来代替
    (2): 优点: 在一定程度上可衰减噪声影响——拉小灰度差异
    (3): 缺点: 图像的边缘轮廓细节变模糊——边缘轮廓也做均值,导致的变模糊

  • 中值滤波(中位数)——非线性滤波
    MATLAB实现中值滤波,见我的博客:
    https://blog.csdn.net/qq_37486501/article/details/80274960
    (1): 基本思想: 某像素的灰度值=窗口内所有像素的灰度中值 来代替
    (2):窗口:
    有不同形状(
    一维:线状
    二维:十字、正方形、菱形、圆形)
    有不同大小(窗口大小中必含奇数元素, 为了保证中心像素值)
    (3): 优点:
    在去噪同时,较好的保持边缘轮廓细节
    适合处理椒盐噪声(因为: 不是去噪声点, 而使改变其灰度值)

  • 小波去噪
    将信号通过小波变换(采用Mallat算法)后,信号产生的小波系数含有信号的重要信息,将信号经小波分解后小波系数较大,噪声的小波系数较小,并且噪声的小波系数要小于信号的小波系数,通过选取一个合适的阀值,大于阀值的小波系数被认为是有信号产生的,应予以保留,小于阀值的则认为是噪声产生的,置为零从而达到去噪的目的。

  • 高斯滤波
    高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。

  • 双边滤波器去噪
    双边滤波器(Bilateral filter)是一种可以保边去噪的滤波器。可以滤除图像数据中的噪声,且还会保留住图像的边缘、纹理等(因噪声是高频信号,边缘、纹理也是高频信息,高斯滤波会在滤除噪声的同时使得边缘模糊)。是使用一个卷积核(模板矩阵),叠加到待处理像素点上,使用对应邻域像素点的加权求和来作为新的输出像素点的值一种方法,简单来说,双边滤波和高斯滤波一样,不同只在于模板矩阵的不同。

2014-07-17 16:52:16 mghhz816210 阅读数 2737
  • 机器学习算法实战——神秘奥妙的支持向量机

    支持向量机算法是机器学习的重要算法,如今已应用在图像处理、 语音识别和自然语言处理等方面。本课程详细讲解支持向量机的原理、相关概念、 推导过程和代码实战。包括:Logistic函数、最大化间隔、凸二次优化、核函数、 数据中的噪声点处理等知识。最后用了手写字分类实例,详细讲解了相关的代码实战。

    48 人正在学习 去看看 穆辉宇

  转自:http://blog.sina.com.cn/s/blog_7d44748b0100wqwf.html


数字信号处理的每个过程差不多都会有噪声出现,而最终得到的图像是噪声与信号的各种作用以后末级产生,噪声处理可以是最后统一处理也可是各个过程的分批处理,所以对噪声的产生以及分类的了解是很有必要的。

   一、按产生的原因分类

   原因有两类,外部原因内部原因,这种分类下每种原因多由若干类型的噪声组成,

   外部噪声即指系统外部干扰以电磁波或经电源串进系统内部而引起的噪声。如电气设备,天体放电现象等引起的噪声,而这种噪声可能就是高斯噪声、脉冲噪声等多个噪声合成累计的。

    内部噪声有四个源头a)由光和电的基本性质所引起的噪声。如电流的产生是由电子或空穴粒子的集合,定向运动所形成。因这些粒子运动的随机性而形成的散粒噪声;导体中自由电子的无规则热运动所形成的热噪声;根据光的粒子性,图像是由光量子所传输,而光量子密度随时间和空间变化所形成的光量子噪声等。b)电器的机械运动产生的噪声。如各种接头因抖动引起电流变化所产生的噪声;磁头、磁带等抖动或一起的抖动等。 c)器材材料本身引起的噪声。如正片和负片的表面颗粒性和磁带磁盘表面缺陷所产生的噪声。随着材料科学的发展,这些噪声有望不断减少,但在目前来讲,还是不可避免的。 d)系统内部设备电路所引起的噪声。如电源引入的交流噪声;偏转系统和箝位电路所引起的噪声等。

    这种分类方法有助于理解噪声产生的源头,有助于对噪声位置定位,对于降噪算法只能起到原理上的帮助。

    二、从噪声频谱上区分

    从噪声的频谱上观察,可分为低频中的1/f噪声,这个噪声在各个系统中都存在的;中间均匀分布的平坦区域为白噪声,即这个区域各频率下的噪声赋值差不多,或说各频率的权值差不多;在频谱的高频部分,有时因滤波白噪声的幅值迅速下降;此外还可能有50HZ的工频干扰;外界其他扰动的周期干扰等等,这相当于从另外一个视角看系统,与上面的第一条组成了横看成岭侧成峰,有助于了解噪声的产生但对去噪没有直接帮助。

    三、噪声与信号的关系

    上面两点是找到噪声了,这一条是说明噪声是如何干扰信号的,如果信号与噪声完全独立是不存在干扰一说的。据两者的关系将噪声分为加性噪声与乘性噪声。

    加性噪声加性嗓声和图像信号强度是不相关的,如运算放大器,又如图像在传输过程中引进的“信道噪声”电视摄像机扫描图像的噪声的,这类带有噪声的图像g可看成为理想无噪声图像f与噪声n之和;

   乘性噪声乘性嗓声和图像信号是相关的,往往随图像信号的变化而变化,如飞点扫描图像中的嗓声、电视扫描光栅、胶片颗粒造成等,由于载送每一个象素信息的载体的变化而产生的噪声受信息本身调制。在某些情况下,如信号变化很小,噪声也不大。为了分析处理方便,常常将乘性噪声近似认为是加性噪声,而且总是假定信号和噪声是互相统计独立。

    四、按概率密度函数分

    这是比较重要的,主要因为引入数学模型,这就有助于运用数学手段去除噪声。如果将一个系统的所有噪声比喻成一个人,则上面的的分法是只能说明人由胳膊腿组成或者人由毛发血肉组成;而第四点分法是说明人由不同的细胞组成,不同的细胞构成了胳膊毛发,同样我们由血肉腿也能推出它里面可能包含哪些细胞,对于不同细胞的改造方法是不同的,这个层面上的分法保证了有的放矢。当然,能不能再找到分子层面、原子层面的分法就是人类发展了。

   这一部分内容冈萨雷斯先生的数字图像处理第二版(P176)图文并茂,这里只说粗略介绍,图和公式看那本书就是。

   a)高斯噪声

   在空间域和频域中,由于高斯噪声在数学上的易处理性,这种噪声(也称为正态噪声)模型经常被用在实践中,事实上,这种易处理性非常方便,使高斯模型经常适用于临街情况下。

    b)瑞利噪声

    需注意,距原点的位移和其密度图形的基本形状向右变形的事实。瑞利密度对于近似偏移的直方图十分适用。

    c)伽马(爱尔兰)噪声

    d)指数分布噪声

    e)均匀分布噪声

    f)脉冲噪声(椒盐噪声)

    双极脉冲噪声也称为椒盐噪声,同时,它们有时也称为散粒和尖峰噪声。

    上述的几种PDF为在实践中模型化宽带噪声干扰状态提供了有用的工具。例如,在一副图像中,高斯噪声的产生源于电子电路噪声和有低照明度或高温带来的传感器噪声。瑞利密度分布在图像范围内特征化噪声现象时非常有用。指数密度分布和伽马密度分布在激光成像中有一些应用。脉冲噪声主要表现在成像中的短暂停留中,例如错误的开关操作。均匀密度分布可能是在实践中描述的最少,然而,均匀密度座位模拟随机数产生器的基础是非常有用的。

    不过这几个类型的用法实例还不清楚,以后再究。

2016-06-26 22:13:09 zhougynui 阅读数 20641
  • 机器学习算法实战——神秘奥妙的支持向量机

    支持向量机算法是机器学习的重要算法,如今已应用在图像处理、 语音识别和自然语言处理等方面。本课程详细讲解支持向量机的原理、相关概念、 推导过程和代码实战。包括:Logistic函数、最大化间隔、凸二次优化、核函数、 数据中的噪声点处理等知识。最后用了手写字分类实例,详细讲解了相关的代码实战。

    48 人正在学习 去看看 穆辉宇

噪声表现形式

噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是噪声让图像不清楚。

噪声来源

两个方面

(1)图像获取过程中

两种常用类型的图像传感器CCD和CMOS采集图像过程中,由于受传感器材料属性、工作环境、电子元器件和电路结构等影响,会引入各种噪声,如电阻引起的热噪声、场效应管的沟道热噪声、光子噪声、暗电流噪声、光响应非均匀性噪声。

(2)图像信号传输过程中

由于传输介质和记录设备等的不完善,数字图像在其传输记录过程中往往会受到多种噪声的污染。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。

噪声对数字图像的影响

对于数字图像信号,噪声表为或大或小的极值,这些极值通过加减作用于图像像素的真实灰度值上,对图像造成亮、暗点干扰,极大降低了图像质量,影响图像复原、分割、特征提取、图像识别等后继工作的进行。

噪声的描述和分类

噪声可以看作随机信号,具有统计学上的特征属性。功率谱密度功率频谱分布PDF)即是噪声的特征之一,通过功率谱密度分类噪声。

(1)高斯噪声

高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。

概率密度函数PDF:


其中z表示灰度值,μ表示z的平均值或期望值,σ表示z的标准差。标准差的平方σ2称为z的方差。

产生原因:1)图像传感器在拍摄时市场不够明亮、亮度不够均匀;2)电路各元器件自身噪声和相互影响;

3)图像传感器长期工作,温度过高。


(2)瑞利噪声

瑞利噪声的概率密度函数由下式给出:

均值:


方差:

注意 距原点的位移和其密度图形的基本形状向右变形的事实,瑞利密度对于近似偏移的直方图十分适用。

(3)伽马(爱尔兰)噪声

伽马噪声的PDF由下式给出:

其中,a>0,b为正整数且“!”表示阶乘。其密度的均值和方差由下式给出:

下图显示了伽马密度的曲线,尽管上式经常被用来表示伽马密度,严格地说,只有当分母为伽马函数Г(b)时才是正确的。当分母如表达式所示时,该密度近似称为爱尔兰密度。


 

(4)指数分布噪声

指数噪声的PDF可由下式给出:

其中a>0。概率密度函数的期望值和方差是:

注意,指数分布的概率密度函数是当b=l时爱尔兰概率分布的特殊情况。

(5)均匀噪声分布

均匀噪声分布的概率密度,由下式给出:

    

概率密度函数的期望值和方差可由下式给出:

           

(6)脉冲噪声(椒盐噪声)

(双极)脉冲噪声的PDF可由下式给出:

        

如果b>a,灰度值b在图像中将显示为一个亮点,相反,a的值将显示为一个暗点。若Pa或Pb为零,则脉冲噪声称为单极脉冲。如果Pa和Pb均不可能为零,尤其是它们近似相等时,脉冲噪声值将类似于随机分布在图像上的胡椒和盐粉微粒。由于这个原因,双极脉冲噪声也称为椒盐噪声。同时,它们有时也称为散粒和尖峰噪声。在我们的讨论中,将交替使用脉冲噪声和椒盐噪声这两个术语。

 噪声脉冲可以是正的,也可以是负的。标定通常是图像数字化过程的一部分。因为脉冲干扰通常与图像信号的强度相比较大,因此,在一幅图像中,脉冲噪声总是数字化为最大值(纯黑或纯白)。这样,通常假设a,b是饱和值,从某种意义上看,在数字化图像中,它们等于所允许的最大值和最小值。由于这一结果,负脉冲以一个黑点(胡椒点)出现在图像中。由于相同的原因,正脉冲以白点(盐点)出现在图像中。对于一个8位图像,这意味着a=0(黑)。b=255(白)。显示了脉冲噪声的概率密度函数。

        前述的一组PDF为在实践中模型化宽带噪声干扰状态提供了有用的工具。例如,在一幅图像中,高斯噪声的产生源于电子电路噪声和由低照明度或高温带来的传感器噪声。瑞利密度分布在图像范围内特征化噪声现象时非常有用。指数密度分布和伽马密度分布在激光成像中有一些应用。像前几章所提及的那样,脉冲噪声主要表现在成像中的短暂停留中,例如,错误的开关操作。均匀密度分布可能是在实践中描述得最少的,然而,均匀密度作为模拟随机数产生器的基础是非常有用的。

不同的噪声在图像的表现形式

下图为原始测试图像

加入不同噪声后图像(椒盐噪声是惟一一种引起退化的视觉可见的噪声类型。):


2016-05-27 10:58:29 qq_20823641 阅读数 13530
  • 机器学习算法实战——神秘奥妙的支持向量机

    支持向量机算法是机器学习的重要算法,如今已应用在图像处理、 语音识别和自然语言处理等方面。本课程详细讲解支持向量机的原理、相关概念、 推导过程和代码实战。包括:Logistic函数、最大化间隔、凸二次优化、核函数、 数据中的噪声点处理等知识。最后用了手写字分类实例,详细讲解了相关的代码实战。

    48 人正在学习 去看看 穆辉宇


1.1 图像噪声的概念与分类

      图像噪声是图像在摄取或传输时所受的随机信号干扰,是图像中各种妨碍人们对其信息接受的因素。很多时候将图像噪声看成是多维随机过程,因而描述噪声的方法完全可以借用随机过程的描述,即用其概率分布函数和概率密度分布函数。

图像噪声是多种多样的,其性质也千差万别,所以了解噪声的分类是很有必要的。

一.按产生的原因分类

      1.外部噪声,即指系统外部干扰以电磁波或经电源串进系统内部而引起的噪声。如电气设备,天体放电现象等引起的噪声。而这种噪声可能就是高斯噪声、脉冲噪声等多个噪声合成累计的。

      2.内部噪声,一般有四个源头:a)由光和电的基本性质所引起的噪声。如电流的产生是由电子或空穴粒子的集合,定向运动所形成。因这些粒子运动的随机性而形成的散粒噪声;导体中自由电子的无规则热运动所形成的热噪声;根据光的粒子性,图像是由光量子所传输,而光量子密度随时间和空间变化所形成的光量子噪声等。b)电器的机械运动产生的噪声。如各种接头因抖动引起电流变化所产生的噪声;磁头、磁带等抖动或一起的抖动等。 c)器材材料本身引起的噪声。如正片和负片的表面颗粒性和磁带磁盘表面缺陷所产生的噪声。随着材料科学的发展,这些噪声有望不断减少,但在目前来讲,还是不可避免的。 d)系统内部设备电路所引起的噪声。如电源引入的交流噪声;偏转系统和箝位电路所引起的噪声等。

这种分类方法有助于理解噪声产生的源头,有助于对噪声位置定位,对于降噪算法只能起到原理上的帮助。

二、按噪声频谱分类

频谱均匀分布的噪声称为白噪声;频谱与频率成反比的称为 1/f噪声;而与频率平方成正比的称为三角噪声等等。

三.按噪声与信号的关系分类

       1.加性噪声:加性嗓声和图像信号强度是不相关的,如运算放大器,又如图像在传输过程中引进的“信道噪声”电视摄像机扫描图像的噪声的,这类带有噪声的图像g可看成为理想无噪声图像f与噪声n之和;高斯噪声、瑞利噪声、指数噪声

     2.乘性噪声:乘性嗓声和图像信号是相关的,往往随图像信号的变化而变化,如飞点扫描图像中的嗓声、电视扫描光栅、胶片颗粒造成等,由于载送每一个象素信息的载体的变化而产生的噪声受信息本身调制。在某些情况下,如信号变化很小,噪声也不大。

为了分析处理方便,常常将乘性噪声近似认为是加性噪声,而且总是假定信号和噪声是互相统计独立。

四.按概率密度函数(PDF)分类

      这是比较重要的,主要因为引入数学模型,这就有助于运用数学手段去除噪声。如果将一个系统的所有噪声比喻成一个人,则上面的的分法是只能说明人由胳膊腿组成或者人由毛发血肉组成;而第四点分法是说明人由不同的细胞组成,不同的细胞构成了胳膊毛发,同样我们由血肉腿也能推出它里面可能包含哪些细胞,对于不同细胞的改造方法是不同的,这个层面上的分法保证了有的放矢。当然,能不能再找到分子层面、原子层面的分法就是人类发展了

     1.高斯噪声:在空间域和频域中,由于高斯噪声(也称为正态噪声)在数学上的易处理性,这种噪声模型经常被用于实践中。与椒盐噪声相似,高斯噪声(gaussnoise)也是数字图像的一个常见噪声,产生该噪声的算法也很简单。上次说过,椒盐噪声是出现在随机位置、噪点深度基本固定的噪声,高斯噪声与其相反,是几乎每个点上都出现噪声、噪点深度随机的噪声。

     2.瑞利噪声:瑞利密度对于近似偏移的直方图十分适用。

     3.伽马(爱尔兰)噪声

     4.指数分布噪声

     5.均匀分布噪声

     6.脉冲噪声(椒盐噪声):双极脉冲噪声也称为椒盐噪声,有时也称为散粒和尖峰噪声。椒盐噪声是出现在随机位置、噪点深度基本固定的噪声,椒盐,按我的理解,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素。那么传入两个参数,分别为黑白像素在图像上所占比例,就可以对图像进行修改。我们可以使用srand 函数,根据time 产生一个随机种子(以免每次随机的结果相同),然后使用rand 函数产生随机数,rand产生的随机数是0 到RAND_MAX 之间的整数,可以通过使用 double (rand ()) / RAND_MAX 产生一个0 到1 之间的浮点型。这样,当这个随机数小于pepper 时,就把该点调黑,大于1 –salt 时,就把该点调白,就可以产生随机的椒盐噪声了。椒盐噪声既不属于加性噪声也不属于乘性噪声。

这种分类方法由于引入数学模型,就有助于运用数学手段去除噪声。

五、按与图像像素关系分类

   无关噪声是指整幅图像的噪声统计特性是一致的,与图像像素的位置和像素亮度值有关系。在去噪时为了简化算法,经常基于这种假设。

   相关噪声是指噪声与图像空间相关或与图形像素亮度值相关,由图像捕获器得到的图像上叠加的噪声几乎都是相关噪声。一般受摄像机的特性影响,往往图像的较暗部分噪声大,较亮部分噪声小。

六、图像去噪效果的评价方法

 评价图像去噪效果的目的在于更好地认识算法的功能和不足,或取长补短以求改进,或深入思索以求创新。一般来说,评价去噪后的图像一般需要考虑3方面的内容:1.噪声衰减程度2.边缘保持程度3,区域平滑程度。理论上讲,去嗓后的图像应该尽可能地衰减噪声,保持图像边缘鲜明,尽可能地平滑区域。简言之就是“去噪保鲜”。评价图像去噪的方法可以分为两类:主观评价法和客观评价法。

(1)    主观评价法

主观评价法主要是通过观察者对图像的视觉观察或者主观理解来对图像处理结果的优劣进行评价。它又可以分为两种类型:绝对评价和相对评价。前者是直接对图像进行判断,后者是将处理结果和原图像进行比较或者对多种方法处理的结果进行比较来评价处理效果的优劣。对图像作主观评价的人也分为两类:一是内行观察者,也称为专业观察者,他们是图像应用在某一领域的专家,熟知图像在该领域所要表达的倍息特点,如图像处理的程序开发人员等;另外一个是外行观察者,他们大都仅从视觉审美的角度观察图像,从某种意义上也对图像处理效果的评价起到积极作用。

(2)客观评价法

  客观评价法主要是通过计算一些量化的指标或者通过描绘能反映图像自身性能的曲线来评价图像处理效果的方法。这里所说的量化指标是一些能反映图像特性的数字值,如图像的方差,均值,信噪比等。按照上面所说的对去嗓的图像应从3方面考虑,可以采用如下的数字指标来客观评价去噪效果。

七、双边滤波器

      双边滤波最先是由Tomasi和Manduchi提出的[13]。双边滤波器对图像的每一点计算其空间相邻且灰度相近的像素值的加权平均,再用它替换掉像素点原来的值,从而达到滤波的效果。在图像灰度变化平缓的区域(小的邻域内灰度变化不大),双边滤波器转化为标准的低通空域滤波器;而在图像灰度变化剧烈的区域,比如在~个二值倒像的边缘上,灰度域影响函数在灰度值相同的一边为1,而在灰度值不同的一边近似于0,滤波器用边缘点邻域内灰度近似的像素点的灰度平均值替代原灰度值。这样,双边滤波既可以达到去噪的效果又可以保留图像的细节,是一种具有应用价值的非线性滤波方法。

  双边滤波是一种保留边缘的图像平滑技术.文[14]分析了双边滤波与各向异性传播的关系。文[15]从线性代数的角度讨论了双边滤波、各向异性传播与鲁棒统计之间的关系。文[16]进一步从鲁棒统计的角度为双边滤波提供了一个理论框架,在理论上证明了空间域影响函数。f和灰度域影响函数g采用高斯形式对野点具有更好的鲁棒性,能更好地保留边缘。

 

hjr-数字图像处理

阅读数 357

没有更多推荐了,返回首页