图像处理技术_图像处理技术详解 - CSDN
精华内容
参与话题
  • 图像处理技术(一)图像处理基础知识

    千次阅读 多人点赞 2018-08-30 15:52:26
    图像处理的概念是对图像信息进行加工处理,以满足人的视觉心理和实际应用的需求。 模拟图像:连续图像,采用数字化(离散化)表示和数字技术处理之前的图像。 数字图像:由连续的模拟图像采样和量化而得的图像,...

    1.1基本概念

    图像处理的概念是对图像信息进行加工处理,以满足人的视觉心理和实际应用的需求。

    模拟图像:连续图像,采用数字化(离散化)表示和数字技术处理之前的图像。

    数字图像:由连续的模拟图像采样和量化而得的图像,组成其基本单位是像素。

    像素的值代表图像在该位置的亮度或灰度,称为图像的灰度值。

    数字图像像素具有整数坐标和整数灰度值。

    1.2

    图像增强:调整图像的对比度,突出重要细节,改善图像质量。

    图像复原和校正:去噪声、去模糊。使得图像能够尽可能地贴近原始图像。

    图像的平滑:图像的去噪声处理(通过滤波算法),为了去除实际成像过程中,因成像设备和环境所造成的图像失真,提取有用的信息。

    边缘锐化:加强图像的轮廓边缘和细节(一般轮廓边缘都处于灰度突变的地方),通过基于微分锐化算法使灰度反差增强。

    图像分割:图像分割就是把图像分成若干个特定的、具有独特性质的区域。

    2.1

    计算机图像处理的几个内容:

    如何对模拟图像进行采样、量化以产生数字图像?

    如何压缩图像数据以便存储和传输?

    如何对数字图像做各种变换以方便处理?

    采样是空间上的离散化,量化是灰度上的离散化。

    图像采样就是在水平和垂直方向上等分隔地分割成网状。

    量化是在每个采样点上进行的,所以必须先采样后量化。两者都是图像数字化不可或缺的两个操作,两者紧密相关,同时完成。

    图像量化实际就是将图像采样后的样本值的范围分为有限多个区域,落入某区域中的值用同一值表示,从而用有限的离散数值量来代替无限的连续模拟量。量化时确定的离散取值个数称为量化级数,表示量化的色彩和亮度值所需的二进制位数称为量化字长,一般量化字长为8位、16位或24位,量化字长越大,越能真实反映原有图像的颜色,但存储的字节也越大。

    M、N图像尺寸,K每个像素所具有的离散灰度级数(不同灰度值的个数)

    存一幅图像所需的位数(bit)B=M*N*K 减少K值能增强图像的反差。

    LENA图是永恒的经典,图像处理领域使用最为广泛的标准测试图。

    2.2

    图像模式:

    1、灰度图像:每个像素的信息由一个量化的灰度级来描述的图像,无彩色信息。

    2、黑白图像、二值图像:只有黑白两色没有中间的过渡,像素值为0、1。

    3、彩色图像:数据多采用RGB三基色模型,包含亮度和颜色两类信息。

    色彩的三要素包括色调(光波的不同波长,反映不同颜色的种类)、饱和度(颜色的纯度,颜色的深浅程度)、亮度(光的明亮程度)。HSL模型

     

    2.3

    图像文件格式:

    BMP文件格式 位图文件格式 由文件头、调色板数据、图像数据三部分组成

    GIF  文件格式 存储256色图像

    TIFF 文件格式 相对经典、功能很强的图像文件存储格式

    JPEG文件格式 静止图像压缩标准文件格式

    DICOM  格式 医学图像文件存储格式

    2.4图像质量评价

    客观评价标准:归一化均方误差NMSE、峰值均方误差PMSE、等效信噪比PSNR

    主观评价标准:图像逼真度、图像可懂度

    展开全文
  • 图像处理(image processing),用计算机对图像进行分析,以达到所需...图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。 概述 编辑 21世纪是一个充满信息的时代,图像作为人类感知世

    图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。

    概述

    编辑
    21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。数字图像处理,即用计算机对图像进行处理,其发展历史并不长。数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。首先数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。
    在计算机中,按照颜色和灰度的多少可以将图像分为二值图像灰度图像索引图像和真彩色RGB图像四种基本类型。大多数图像处理软件都支持这四种类型的图像。
    中国物联网校企联盟认为图像处理将会是物联网产业发展的重要支柱之一,它的具体应用是指纹识别技术[1]  。

    常用方法

    编辑
    1 )图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
    2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
    3 )图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
    4 )图像分割:图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
    5 )图像描述:图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
    6 )图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

    图像

    编辑

    二值图像

    一幅二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。

    灰度图像

    灰度图像矩阵元素的取值范围通常为[0,255]。因此其数据类型一般为8位无符号整数的(int8),这就是人们经常提到的256灰度图像。“0”表示纯黑色,“255”表示纯白色,中间的数字从小到大表示由黑到白的过渡色。在某些软件中,灰度图像也可以用双精度数据类型(double)表示,像素的值域为[0,1],0代表黑色,1代表白色,0到1之间的小数表示不同的灰度等级。二值图像可以看成是灰度图像的一个特例。

    索引图像

    索引图像的文件结构比较复杂,除了存放图像的二维矩阵外,还包括一个称之为颜色索引矩阵MAP的二维数组。MAP的大小由存放图像的矩阵元素值域决定,如矩阵元素值域为[0,255],则MAP矩阵的大小为256Ⅹ3,用MAP=[RGB]表示。MAP中每一行的三个元素分别指定该行对应颜色的红、绿、蓝单色值,MAP中每一行对应图像矩阵像素的一个灰度值,如某一像素的灰度值为64,则该像素就与MAP中的第64行建立了映射关系,该像素在屏幕上的实际颜色由第64行的[RGB]组合决定。也就是说,图像在屏幕上显示时,每一像素的颜色由存放在矩阵中该像素的灰度值作为索引通过检索颜色索引矩阵MAP得到。索引图像的数据类型一般为8位无符号整形(int8),相应索引矩阵MAP的大小为256Ⅹ3,因此一般索引图像只能同时显示256种颜色,但通过改变索引矩阵,颜色的类型可以调整。索引图像的数据类型也可采用双精度浮点型(double)。索引图像一般用于存放色彩要求比较简单的图像,如Windows中色彩构成比较简单的壁纸多采用索引图像存放,如果图像的色彩比较复杂,就要用到RGB真彩色图像。

    RGB彩色图像

    RGB图像与索引图像一样都可以用来表示彩色图像。与索引图像一样,它分别用红(R)、绿(G)、蓝(B)三原色的组合来表示每个像素的颜色。但与索引图像不同的是,RGB图像每一个像素的颜色值(由RGB三原色表示)直接存放在图像矩阵中,由于每一像素的颜色需由R、G、B三个分量来表示,M、N分别表示图像的行列数,三个M x N的二维矩阵分别表示各个像素的R、G、B三个颜色分量。RGB图像的数据类型一般为8位无符号整形,通常用于表示和存放真彩色图像,当然也可以存放灰度图像。
    数字化图像数据有两种存储方式[6]:位图存储(Bitmap)和矢量存储(Vector)
    我们平常是以图像分辨率(即像素点)和颜色数来描述数字图象的。例如一张分辨率为640*480,16位色的数字图片,就由2^16=65536种颜色的307200(=640*480)个素点组成。
    位图图像:位图方式是将图像的每一个象素点转换为一个数据,当图像是单色(只有黑白二色)时,8个象素点的数据只占据一个字节(一个字节就是8个二进制数,1个二进制数存放象素点);16色(区别于前段“16位色”)的图像每两个象素点用一个字节存储;256色图像每一个象素点用一个字节存储。这样就能够精确地描述各种不同颜色模式的图像图面。位图图像弥补了矢量式图像的缺陷,它能够制作出色彩和色调变化丰富的图像,可以逼真地表现自然界的景象,同时也可以很容易地在不同软件之间交换文件,这就是位图图像的优点;而其缺点则是它无法制作真正的3D图像,并且图像缩放和旋转时会产生失真的现象,同时文件较大,对内存和硬盘空间容量的需求也较高。位图方式就是将图像的每一像素点转换为一个数据。如果用1位数据来记录,那么它只能代表2种颜色(2^1=2);如果以8位来记录,便可以表现出256种颜色或色调(2^8=256),因此使用的位元素越多所能表现的色彩也越多。通常我们使用的颜色有16色、256色、增强16位和真彩色24位。一般所说的真彩色是指24位(2^24)的位图存储模式适合于内容复杂的图像和真实照片。但随着分辨率以及颜色数的提高,图像所占用的磁盘空间也就相当大;另外由于在放大图像的过程中,其图像势必要变得模糊而失真,放大后的图像像素点实际上变成了像素“方格”。 用数码相机和扫描仪获取的图像都属于位图。
    矢量图像:矢量图像存储的是图像信息的轮廓部分,而不是图像的每一个象素点。例如,一个圆形图案只要存储圆心的坐标位置和半径长度,以及圆的边线和内部的颜色即可。该存储方式的缺点是经常耗费大量的时间做一些复杂的分析演算工作,图像的显示速度较慢;但图像缩放不会失真;图像的存储空间也要小得多。所以,矢量图比较适合存储各种图表和工程

    数据

    编辑
    图像处理离不开海量、丰富的基础数据,包括视频、静态图像等多种格式,如Berkeley分割数据集和基准500 (BSDS500)、西门菲沙大学不同光照物体图像数据库、神经网络人脸识别数据、CBCL-MIT StreetScenes(麻省理工学院街景数据库)等。

    数字化

    编辑
    通过取样和量化过程将一个以自然形式存在的图像变换为适合计算机处理的数字形式。图像在计算机内部被表示为一个数字矩阵,矩阵中每一元素称为像素。图像数字化需要专门的设备,常见的有各种电子的和光学的扫描设备,还有机电扫描设备和手工操作的数字化仪。

    图像编码

    编辑
    对图像信息编码,以满足传输和存储的要求。编码能压缩图像的信息量,但图像质量几乎不变。为此,可以采用模拟处理技术,再通过模-数转换得到编码,不过多数是采用数字编码技术。编码方法有对图像逐点进行加工的方法,也有对图像施加某种变换或基于区域、特征进行编码的方法。脉码调制、微分脉码调制、预测码和各种变换都是常用的编码技术。

    图像压缩

    编辑
    由数字化得到的一幅图像的数据量十分巨大,一幅典型的数字图像通常由500×500或1000×1000个像素组成。如果是动态图像,其数据量更大。因此图像压缩对于图像的存储和传输都十分必要。
    图像压缩有两类压缩算法,即无损压缩和有损压缩。最常用的无损压缩算法取空间或时间上相邻像素值的差,再进行编码。游程码就是这类压缩码的例子。有损压缩算法大都采用图像交换的途径,例如对图像进行快速傅里叶变换或离散的余弦变换。已作为图像压缩国际标准的JPEG和MPEG均属于有损压缩算法。前者用于静态图像,后者用于动态图像。它们都由芯片实现[2]  。

    增强复原

    编辑
    图像增强的目标是改进图片的质量,例如增加对比度,去掉模糊和噪声,修正几何畸变等;图像复原是在假定已知模糊或噪声的模型时,试图估计原图像的一种技术。
    图像增强按所用方法可分成频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声[3]  。
    早期的数字图像复原亦来自频率域的概念。现代采取的是一种代数的方法,即通过解一个大的方程组来复原理想的图片。
    以提高图像质量为目的的图像增强和复原对于一些难以得到的图片或者在拍摄条件十分恶劣情况下得到的图片都有广泛的应用。例如从太空中拍摄到的地球或其他星球的照片,用电子显微镜或X光拍摄的生物医疗图片等。
    图像增强 使图像清晰或将其转换为更适合人或机器分析的形式。与图像复原不同,图像增强并不要求忠实地反映原始图像。相反,含有某种失真(例如突出轮廓线)的图像可能比无失真的原始图像更为清晰。常用的图像增强方法有:①灰度等级直方图处理:使加工后的图像在某一灰度范围内有更好的对比度;②干扰抑制:通过低通滤波、多图像平均、施行某类空间域算子等处理,抑制叠加在图像上的随机性干扰;③边缘锐化:通过高通滤波、差分运算或某种变换,使图形的轮廓线增强;④伪彩色处理:将黑白图像转换为彩色图像,从而使人们易于分析和检测图像包含的信息。
    图像复原 除去或减少在获得图像过程中因各种原因产生的退化。这类原因可能是光学系统的像差或离焦、摄像系统与被摄物之间的相对运动、电子或光学系统的噪声和介于摄像系统与被摄像物间的大气湍流等。图像复原常用二种方法。当不知道图像本身的性质时,可以建立退化源的数学模型,然后施行复原算法除去或减少退化源的影响。当有了关于图像本身的先验知识时,可以建立原始图像的模型,然后在观测到的退化图像中通过检测原始图像而复原图像。
    图像分割将图像划分为一些互不重叠的区域,每一区域是像素的一个连续集。通常采用把像素分入特定区域的区域法和寻求区域之间边界的境界法。区域法根据被分割对象与背景的对比度进行阈值运算,将对象从背景中分割出来。有时用固定的阈值不能得到满意的分割,可根据局部的对比度调整阈值,这称为自适应阈值。境界法利用各种边缘检测技术,即根据图像边缘处具有很大的梯度值进行检测。这两种方法都可以利用图像的纹理特性实现图像分割。

    形态学

    编辑
    形态学一词通常指生物学的一个分支,它用于处理动物和植物的形状和结构。在数学形态学的语境中也使用该词来作为提取图像分量的一种工具,这些分量在表示和描述区域形状(如边界,骨骼和凸壳)时是很有用的。此外,我们还很关注用于预处理和后处理的形态学技术,如形态学滤波、细化和裁剪。
    数学形态学的基本运算
    数学形态学的基本运算有4个:腐蚀、膨胀、开启和闭合。数学形态学方法利用一个称作结构元素的”探针”收集图像的信息,当探针在图像中不断移动时,便可考察图像各个部分之间的相互关系,从而了解图像的结构特征。在连续空间中,灰度图像的腐蚀、膨胀、开启和闭合运算分别表述如下。
    腐蚀
    腐蚀“收缩”或“细化”二值图像中的对象。收缩的方式和程度由一个结构元素控制。数学上,A被B腐蚀,记为AΘB,定义为:
    换言
    腐蚀运算腐蚀运算
    之,A被B腐蚀是所有结构元素的原点位置的集合,其中平移的B与A的背景并不叠加。
    膨胀
    膨胀是在二值图像中“加长”或“变粗”的操作。这种特殊的方式和变粗的程度由一个称为结构元素的集合控制。结构元素通常用0和1的矩阵表示。数学上,膨胀定义为集合运算。A被B膨胀,记为A⊕B,定义为:
    膨胀运算膨胀运算
    其中,Φ为空集,B为结构元素。总之,A被B膨胀是所有结构元素原点位置组成的集合,其中映射并平移后的B至少与A的某些部分重叠。这种在膨胀过程中对结构元素的平移类似于空间卷积。
    膨胀满足交换律,即A⊕B=B⊕A。在图像处理中,我们习惯令A⊕B的第一个操作数为图像,而第二个操作数为结构元素,结构元素往往比图像小得多。
    膨胀满足结合律,即A⊕(B⊕C)=(A⊕B)⊕C。假设一个结构元素B可以表示为两个结构元素B1和B2的膨胀,即B=B1⊕B2,则A⊕B=A⊕(B1⊕B2)=(A⊕B1)⊕B2,换言之,用B膨胀A等同于用B1先膨胀A,再用B2膨胀前面的结果。我们称B能够分解成B1和B2两个结构元素。结合律很重要,因为计算膨胀所需要的时间正比于结构元素中的非零像素的个数。通过结合律,分解结构元素,然后再分别用子结构元素进行膨胀操作往往会实现很客观的速度的增长。

    开启

    A被B的形态学开
    开运算开运算
    运算可以记做A?B,这种运算是A被B腐蚀后再用B来膨胀腐蚀结果,即:
    开运算的数学公式为:
    其中
    开运算开运算
    ,∪{·}指大括号中所有集合的并集。该公式的简单几何解释为:A?B是B在A内完全匹配的平移的并集。形态学开运算完全删除了不能包含结构元素的对象区域,平滑了对象的轮廓,断开了狭窄的连接,去掉了细小的突出部分。

    闭合

    A被B形态学闭运算记做A·B,它是先膨胀后腐蚀的结果:
    从几何学
    闭运算闭运算
    上讲,A·B是所有不与A重叠的B的平移的并集。想开运算一样,形态学闭运算会平滑对象的轮廓。然后,与开运算不同的是,闭运算一般会将狭窄的缺口连接起来形成细长的弯口,并填充比结构元素小的洞。
    基于这些基本运算可以推导和组合成各种数学形态学实用算法,用它们可以进行图像形状和结构的分析及处理,包括图像分割、特征提取、边界检测、图像降噪、图像增强和恢复等。

    图像分析

    编辑
    从图像中抽取某些有用的度量、数据或信息。目的是得到某种数值结果,而不是产生另一个图像。图像分析的内容和模式识别、人工智能的研究领域有交叉,但图像分析与典型的模式识别有所区别。图像分析不限于把图像中的特定区域按固定数目的类别加以分类,它主要是提供关于被分析图像的一种描述。为此,既要利用模式识别技术,又要利用关于图像内容的知识库,即人工智能中关于知识表达方面的内容。图像分析需要用图像分割方法抽取出图像的特征,然后对图像进行符号化的描述。这种描述不仅能对图像中是否存在某一特定对象作出回答,还能对图像内容作出详细描述。
    图像处理的各个内容是互相有联系的。一个实用的图像处理系统往往结合应用几种图像处理技术才能得到所需要的结果。图像数字化是将一个图像变换为适合计算机处理的形式的第一步。图像编码技术可用以传输和存储图像。图像增强和复原可以是图像处理的最后目的,也可以是为进一步的处理作准备。通过图像分割得出的图像特征可以作为最后结果,也可以作为下一步图像分析的基础。
    图像匹配、描述和识别对图像进行比较和配准,通过分制提取图像的特征及相互关系,得到图像符号化的描述,再把它同模型比较,以确定其分类。图像匹配试图建立两张图片之间的几何对应关系,度量其类似或不同的程度。匹配用于图片之间或图片与地图之间的配准,例如检测不同时间所拍图片之间景物的变化,找出运动物体的轨迹[4]  。
    从图像中抽取某些有用的度量、数据或信息称为图像分析。图像分析的基本步骤是把图像分割成一些互不重叠的区域,每一区域是像素的一个连续集,度量它们的性质和关系,最后把得到的图像关系结构和描述景物分类的模型进行比较,以确定其类型。识别或分类的基础是图像的相似度。一种简单的相似度可用区域特征空间中的距离来定义。另一种基于像素值的相似度量是图像函数的相关性。最后一种定义在关系结构上的相似度称为结构相似度。
    以图片分析和理解为目的的分割、描述和识别将用于各种自动化的系统,如字符和图形识别、用机器人进行产品的装配和检验、自动军事目标识别和跟踪、指纹识别、X光照片和血样的自动处理等。在这类应用中,往往需综合应用模式识别和计算机视觉等技术,图像处理更多的是作为前置处理而出现的。
    多媒体应用的掀起,对图像压缩技术的应用起了很大的推动作用。图像,包括录像带一类动态图像将转为数字图像,并和文字、声音、图形一起存储在计算机内,显示在计算机的屏幕上。它的应用将扩展到教育、培训和娱乐等新的领域[5]  。

    应用

    编辑
    摄影及印刷
    卫星图像处理(Satellite image processing)
    医学图像处理(Medical image processing)
    面孔识别,特征识别(Face detection, feature detection, face identification)
    显微图像处理(Microscope image processing)
    汽车障碍识别(Car barrier detection)[6] 

    常见软件

    编辑

    Adobe Photoshop

    软件特点:知名度以及使用率最高的图像处理软件
    软件优势:使用业界标准的Adobe PhotoshopCS软件更加快速地获取更好效果,同时为图形和Web设计、摄影及视频提供必不可少的新功能。
    与同行软件的比较:这回Adobe的确给设计师们带来了很大的惊喜,Photoshop CS新增了许多强有力的功能,特别是对于摄影师来讲,这次它大大突破了以往Photoshop系列产品更注重平面设计的局限性,对数码暗房的支持功能有了极大的加强和突破。
    近期版本:2016年11月2日,Adobe 公司更新了旗下 Photoshop CC 2017最新版。[7] 

    Adobe Illustrator

    软件特点:专业矢量绘图工具,功能强大,界面友好。
    软件优势:无论您是生产印刷出版线稿的设计者和专业插画家、生产多媒体图像的艺术家、还是互联网页或在线内容的制作者,都会发现Illustrator不仅仅是一个艺术产品工具,能适合大部分小型设计到大型的复杂项目。
    与同行软件的比较:功能极其强大,操作相当专业。与Adobe公司其它软件如Photoshop、Primiere及Indesign等软件可以良好的兼容,在专业领域优势比较明显。

    CorelDRAW

    软件特点:界面设计友好,空间广阔,操作精微细致。兼容性佳。
    软件优势:非凡的设计能力广泛地应用于商标设计、标志制作、模型绘制、插图描画、排版及分色输出等等诸多领域。市场领先的文件兼容性以及高质量的内容可帮助您将创意变为专业作品。从与众不同的徽标和标志到引人注目的营销材料以及令人赏心悦目的Web图形,应有尽有。
    与同行软件的比较:功能强大,兼容性极好,可生成各种与其它软件相兼容的格式,操作较Illustrator简单,在国内中小型广告设计公司应用率极高。

    可牛影像

    软件特点:可牛影像是新一代的图片处理软件,独有美白祛痘、瘦脸瘦身、明星场景、多照片叠加等功能,更有50余种照片特效,数秒即可制作出影楼级的专业照片。
    软件优势:图片编辑、人像美容、场景日历、添加水印饰品、添加各种艺术字体、制作动感闪图、摇头娃娃、多图拼接,使人能想到的功能,应有尽有,而且简单易用。
    与同行软件的比较:场景日历、动感闪图、摇头娃娃等都是传统图像处理软件所没有的。有了可牛影像,不需要再像photoshop那样,需要专业的技能才能处理照片。

    光影魔术手

    软件特点:“nEO iMAGING”〖光影魔术手〗是一个对数码照片画质进行改善及效果处理的软件。简单、易用,不需要任何专业的图像技术,就可以制作出专业胶片摄影的色彩效果。
    软件优势:模拟反转片的效果,令照片反差更鲜明,色彩更亮丽,模拟反转负冲的效果,色彩诡异而新奇,模拟多类黑白胶片的效果,在反差、对比方面,和数码相片完全不同。
    与同行软件的比较:是一个照片画质改善和个性化处理的软件。简单、易用,每个人都能制作精美相框、艺术照、专业胶片效果,而且完全免费。

    ACDSee

    软件特点:不论您拍摄的相片是什么类型-家人与朋友的,或是作为业余爱好而拍摄的艺术照-您都需要相片管理软件来轻松快捷地整理以及查看、修正和共享这些相片。
    软件优势:ACDSee 9可以从任何存储设备快速“获取相片”,还可以使用受密码保护的“隐私文件夹”这项新功能来存储机密信息。
    与同行软件的比较:强大的电子邮件选项、幻灯放映、CD/DVD刻录,还有让共享相片变得轻而易举的网络相册工具。使用红眼消除、色偏消除、曝光调整以及“相片修复”工具等快速修正功能来改善相片。

    Macromedia Flash

    软件特点:一个可视化的网页设计和网站管理工具,支持最新的Web技术,包含HTML检查、HTML格式控制、HTML格式化选项等。
    软件优势:除了新的视频和动画特性,还提供了新的绘图效果和更好的脚本支持,同时也集成了流行的视频辑和编码工具,还提供软件允许用户测试移动手机中的Flash内容等新功能。
    与同行软件的比较:在编辑上你可以选择可视化方式或者你喜欢的源码编辑方式。

    Ulead GIF Animator

    软件特点:友立公司出版的动画GIF制作软件,内建的Plugin有许多现成的特效可以立即套用,可将AVI文件转成动画GIF文件,而且还能将动画GIF图片最佳化,能将你放在网页上的动画GIF图档减肥,以便让人能够更快速的浏览网页。
    软件优势:这是一个很方便的GIF 动画制作软件,由Ulead Systems.Inc 创作。Ulead GIF Animator 不但可以把一系列图片保存为GIF 动画格式,还能产生二十多种2D 或3D 的动态效果,足以满足您制作网页动画的要求。
    与同行软件的比较:与其它图形文件格式不同的是, 一个GIF文件中可以储存多幅图片,这时, GIF 将其中存储的图片像播放幻灯片一样轮流显示, 这样就形成了一段动画[8]  。



    展开全文
  • 图像处理技术介绍

    2019-07-14 15:58:42
    今天阅读论文源码发现论文中运用了大量的图像处理相关技术,于是通过查询资料发现有一网站对图像处理技术介绍的特别好,因此保存一下,以便之后查阅。 HIPR ...
    • 今天阅读论文源码发现论文中运用了大量的图像处理相关技术,于是通过查询资料发现有一网站对图像处理技术介绍的特别好,因此保存一下,以便之后查阅。
    • HIPR
    展开全文
  • 图像处理技术手册01

    2020-07-29 14:20:42
    PDF134MB,分为三个压缩包:图像处理技术手册01,图像处理技术手册02,图像处理技术手册03。 内容简介  本书共分基础和应用两部分,共31章。基础又分图像处理和相关知识两部分;应用分为映射、认识及论辩等三个...
  • 数字图像处理(冈萨雷斯 第三版)

    万次阅读 2019-01-13 15:37:54
    1.1 图像与图像处理的概念 图像(Image): 使用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼并进而产生视觉的实体。包括: ·各类图片,如普通照片、X光片、遥感图片; ·各类...

    1.1 图像与图像处理的概念

    图像(Image): 使用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼并进而产生视觉的实体。包括:

    ·各类图片,如普通照片、X光片、遥感图片;

    ·各类光学图像,如电影、电视画面;

    ·客观世界在人们心目中的有形想象以及外部描述,如绘画、绘图等。

    数字图像:为了能用计算机对图像进行加工,需要把连续图像在坐标空间和性质空间都离散化,这种离散化了的图像是数字图像。

    图像中每个基本单元叫做图像的元素,简称像素(Pixel)。

    数字图像处理(Digital Image Processing):是指应用计算机来合成、变换已有的数字图像,从而产生一种新的效果,并把加工处理后的图像重新输出,这个过程称为数字图像处理。也称之为计算机图像处理(Computer Image Processing)。

    1.2 图像处理科学的意义

    1.图像是人们从客观世界获取信息的重要来源

    ·人类是通过感觉器官从客观世界获取信息的,即通过耳、目、口、鼻、手通过听、看、味、嗅和接触的方式获取信息。在这些信息中,视觉信息占70%。

    ·视觉信息的特点是信息量大,传播速度快,作用距离远,有心理和生理作用,加上大脑的思维和联想,具有很强的判断能力。

    ·人的视觉十分完善,人眼灵敏度高,鉴别能力强,不仅可以辨别景物,还能辨别人的情绪。

    2.图像信息处理是人类视觉延续的重要手段

    非可见光成像。如:γ射线、X射线、紫外线、红外线、微波。利用图像处理技术把这些不可见射线所成图像加以处理并转换成可见图像,可对非人类习惯的那些图像源进行加工。

    3.图像处理技术对国计民生有重大意义

    图像处理技术发展到今天,许多技术已日益趋于成熟,应用也越来越广泛。它渗透到许多领域,如遥感、生物医学、通信、工业、航空航天、军事、安全保卫等。

    1.3 数字图像处理的特点

    1. 图像信息量大

    每个像素的灰度级至少要用6bit(单色图像)来表示,一般采用8bit(彩色图像),高精度的可用12bit或16bit。

    一般分辨率的图像像素为256×256、 512×512 256×256×8=64kB 512×512×8=256kB

    高分辨率图像像素可达1024×1024、2048×2048

    1024×1024×8=1MB 2048×2048×8=4MB

    如:X射线照片一般用64到256kB的数据量 一幅遥感图像3240×2340×4≈30Mb

    2. 图像处理技术综合性强

    一般来说涉及通信技术、计算机技术、电视技术、电子技术,至于涉及到的数学、物理学等方面的基础知识就更多。

    3.图像信息理论与通信理论密切相关

    图像理论是把通信中的一维问题推广到二维空间上来研究的。

    通信研究的是一维时间信息,时间域和频率域的问题。任何一个随时间变化的波形都是由许多频率不同、振幅不同的正弦波组合而成的。

    图像研究的是二维空间信息,研究的是空间域和空间频率域(或变换域)之间的关系。任何一幅平面图像是由许多频率、振幅不同的X-Y方向的空间频率波相叠加而成。

    1.4 数字图像处理的主要方法

    1.空域法

    把图像看作是平面中各个像素组成的集合,然后直接对这一二维函数进行相应的处理。主要有两大类:

    · 域处理法:包括梯度运算,拉普拉斯算子运算,平滑算子运算和卷积运算。

    · 点处理法:包括灰度处理,面积、周长、体积、重心运算等等。

    2.变换域法

    数字图像处理的变换域处理方法是首先对图像进行正交变换,然后在施行各种处理,处理后再反变换到空间域,得到处理结果。 包括滤波、数据压缩、特征提取等处理。

    1.5 数字图像处理的主要内容

    完整的数字图像处理系统大体上可分为如下几个方面:

    1.图像的信息的获取(Image information acquisition)

    把一幅图像转换成适合输入计算机和数字设备的数字信号。需要两个部件以获取数字图像:

    (1)物理设备,该设备对我们希望成像的物体发射的能量很敏感。

    (2)数字化器,是一种把物理感知装置的输出转化为数字形式的设备。

    常见的图像输入设备有:扫描仪、摄像机、数码相机、图像采集卡等

    2.图像信息的存储(Image information storage)

    主要有三类:

    (1)处理过程中使用的快速存储器;

    ·计算机内存。

    ·帧缓存,通常可存储多幅图像并可以视频速度读取。它可以允许对图像进行放大、缩小,以及垂直翻转和水平翻转。

    (2)用于比较快的重新调用的在线或联机存储器;

    ·磁盘,可存储几个G byte的数据;

    ·磁光存储器,可在51/4英寸的光片上存储上G byte的数据;

    ·光盘塔,一个光盘塔可放几十个到几百个光盘,利用机械装置插入或从光盘驱动器中抽取光盘。

    (3)不经常使用的数据库(档案库)存储器。

    ·磁带。长13英尺的磁带可存储近1G byte的数据,但储藏寿命较短。

    ·一次写多次读(WORM)光盘。可在12英寸的光盘上存储6G byte数据,在14英寸的光盘上存储10G byte数据,并易于储藏。

    3.图像信息的传送(Image information transmission)

    可分为系统内部传送与远距离传送:

    (1)内部传送:

    指在不同设备间交换图像数据。现在有许多用于局域通信的软件和硬件以及各种标准协议。多采用DMA(Direct Memory Access)技术以解决速度问题。

    (2)外部远距离传送:

    主要问题是图像数据量大而传输通道比较窄。

    这一状况由于光纤和其他宽带技术的发展,正在迅速得到改进。另一方面,解决这个问题需要依靠对图像数据压缩。

    4.图像的输出与显示

    图像处理的最终目的是为人或机器提供一幅更便于解释和识别的图像。因此图像的输出也是图像处理的重要内容之一。

    主要分两类:(1)硬拷贝(记录图像)。如激光打印机、胶片照相机、热敏装置、喷墨装置和数字单元(如CD-ROM)等。

    (2)软拷贝。如CRT (Cathode Ray Tube)显示、液晶显示器(LCD)、场致发光显示(FED)。

    5.数字图像处理(Digital image processing)

    主要包括以下几项内容:

    (1)几何处理(Geometrical Image Processing)

    主要包括坐标变换,图像的放大、缩小、旋转、移动,多个图像配准,全景畸变校正,扭曲校正,周长、面积、体积计算等。

    (2)算术处理(Arithmetic Processing)

    主要对图像施以+、-、×、÷等运算,虽然该处理主要针对像素点的处理,但非常有用,如医学图像的减影处理就有显著的效果。

    (3)图像增强(Image Enhancement)

    就是突出图像中感兴趣的信息,而减弱或去除不需要的信息,从而使有用信息得到加强。

    ·改善图像的视觉效果,提高图像成分的清晰度;

    ·使图像变得更有利于计算机处理,便于进一步进行区分或解释。

    (4)图像复原(或恢复)(Image Restoration)

    就是尽可能地减少或者去除图像在获取过程中的降质(干扰和模糊),恢复被退化图像的本来面貌,从而改善图像质量。

    关键是对每种退化(图像品质下降)建立一个合理的模型。

    (5)图像重建(Image Reconstruction)

    是从数据到图像的处理。即输入的是某种数据,而处理结果得到的是图像。典型应用有CT技术和三维重建技术。

    (6)图像编码(Image Encoding)

    主要是利用图像信号的统计特性及人类视觉的生理学及心理学特征对图像信号进行高效编码,其目的是压缩数据量,以解决数据量大的矛盾。

    (7)图像识别(Image Recognition)

    利用计算机识别出图像中的目标并分类、用机器的智能代替人的智能。它所研究的领域十分广泛,如,机械加工中零部件的识别、分类;从遥感图片中分辨农作物、森林、湖泊和军事设施;从气象观测数据或气象卫星照片准确预报天气;从X光照片判断是否发生肿瘤;从心电图的波形判断被检查者是否患有心脏病;在交通中心实现交通管制、识别违章行驶的汽车及司机,等等。

    1.6 数字图像处理的起源与应用

    数字图像处理的起源:

    最早可追溯到20世纪20年代,借助打印设备进行数字图像的处理。

    基于光学还原的技术,该技术在电报接收端用穿孔纸带打出图片。

    到1929年由早期的用5个灰度等级对图像编码,增加到15个等级。

    真正数字图像处理技术的诞生可追溯到20世纪60年代早期。

    数字图像处理技术在20世纪60年代末和20世纪70年代初开始用于医学图像、地球遥感监测和天文学等领域。

    数字图像处理主要应用于下面的几个领域:

    (1) 通讯

    按业务性能划分可分为:电视广播传真、可视电话、会议电视、图文电视、可视图文以及电缆电视。

    按图像变化性质分可分为:静止图像和活动图像通信。

    (2) 遥感

    航空遥感和卫星遥感图像都需要数字图像处理技术的加工处理,并提取出有用的信息。主要用于土地测绘,资源调查,气候监测,农作物估产,自然灾害预测预报,环境污染监测,气象卫星云图处理以及地面军事目标的识别。

    (3) 生物医学领域中的应用

    计算机图像处理在医学上应用最成功的例子就X射线CT(X-ray Computed Tomography),20世纪70年代发明的计算机轴向断层术(CAT),简称计算机断层。

    (4) 工业生产中的应用

    从70年代起得到了迅速的发展,图像处理技术的重要应用领域。在生产线中对产品及部件进行无损检测,如食品、水果质量检查,无损探伤,焊缝质量或表面缺陷 等等。

    (5) 军事、 公安等方面的应用

    军事目标的侦察、制导和警戒系统、自动灭火器的控制及反伪装;公安部门的现场照片、指纹、手迹、人像等的处理和辨识;历史文字和图片档案的修复和管理等。

    (6) 教学和科研领域

    如科学可视化技术,远程培训及教学也将大量使用图像处理技术的成果。

    (7) 电子商务

    如身份认证、产品防伪、水印技术等。

    1.7 数字图像处理领域的发展动向

    需进一步研究的问题:

    (1)在进一步提高精度的同时着重解决处理速度问题。

    (2)加强软件研究、开发新的处理方法。

    (3)加强边缘学科的研究工作,促进图像处理技术的发展。

    (4)加强理论研究,逐步形成图像处理科学自身的理论体系。

    (5)图像处理领域的标准化。

    未来发展动向大致可归纳为:

    (1)图像处理的发展将围绕HDTV的研制,开展实时图像处理的理论及技术研究,向着高速、高分辨率、立体化、多媒体化、智能化和标准化方向发展。

    (2)图像、图形相结合,朝着三维成像或多维成像的方向发展。

    (3)硬件芯片研究。

    (4)新理论与新算法研究。

    2-1. 数字数据传输通常用波特率度量,其定义为每秒中传输的比特数。通常的传输是以一个开始比特、一个字节(8比特)的信息和一个停止比特组成的包完成的。基于这个概念回答下列问题:

    (a)用56K波特的调制解调器传输一幅1024×1024、256级灰度的图像要花费几分钟?

    (b)以750K波特[是典型的电话DSL(数字用户线)连接的速度]传输要用多少时间?

    解:(a)传输数据包(包括起始比特和终止比特)为:N=n+m=10bits

    对于一幅1024×1024 大小的图像,其总的数据量为M=(1024)2×N,

    故以56K 波特的速率传输所需时间为T=M/56000=(1024)2×(8+2)/56000=187.25s=3.1min

    (b) 以750K 波特的速率传输所需时间为T=M/56000=(1024)2×(8+2)/750000=14s

    (类似题目) 在串行通信中,常用波特率描述传输的速率,它被定义为每秒传输的数据比特数。串行通信中,数据传输的单位是帧,也称字符。假如一帧数据由一个起始比特位、8 个信息比特位和一个结束比特位构成。根据以上概念,请问:

    (1)如果要利用一个波特率为56kbps(1k=1000)的信道来传输一幅大小为1024×1024、256级灰度的数字图像需要多长时间?

    (2)如果是用波特率为750kbps 的信道来传输上述图像,所需时间又是多少?

    (3)如果要传输的图像是512×512的真彩色图像(颜色数目是32 bit),则分别在上面两种信道下传输,各需要多长时间?

    解答:

    (1)传输的比特数为1024×1024×8×(1+8+1)/8=10485760,则在波特率为56kbps 的信道上传输时,所需时间为10485760/56000=187.25 秒。

    (2)传输的比特数为1024×1024×8×(1+8+1)/8=10485760,则在波特率为750kbps 的信道上传输时,所需时间为10485760/750000=13.98 秒=14s。

    (3)传输的比特数为512×512×32×(1+8+1)/8=10485760。在波特率为56kbps 的信道上传输时,所需时间为10485760/56000=187.25 秒;在波特率为750kbps 的信道上传输时,所需时间为10485760/750000=13.98 秒。

    2.11 两个图像子集S1和S2图下图所示。对于V={1},确定这两个子集是(a)4-邻接,(b)8-邻接,还是(c)m邻接的?

    解a) S1 和S2 不是4 连接,因为q 不在N4(p)集中。

    (b) S1 和S2 是8 连接,因为q 在N8(p)集中。

    (c) S1 和S2 是m 连接,因为q 在集合ND(p)中,且N4(p)∩ N4(q)没有V 值的像素

    2-3.考虑如下所示的图像分割:

    (a)令V={0,1}并计算p和q间的4,8,m通路的最短长度。如果在这两点间不存在特殊通路,其解释原因。

    (b)对V={1,2}重复上题。

    解: (1) 在V={0,1}时,p和q之间通路的D4距离为∞,D8距离为4,Dm距离为5。

    (2) 在V={1,2}时,p和q之间通路的D4距离为6,D8距离为4,Dm距离为6。

    解:(a) 当V={0,1}时,p 和q 之间不存在4 邻接路径,因为不同时存在从p 到q 像素的4 毗邻像素和具备V 的值,情况如图(a)所示。p 不能到达q。8 邻接最短路径如图(b)所示,其最短长度为4。m邻接路径如图(b)虚线箭头所示,最短长度为5。这两种最短长度路径在此例中均具有唯一性。

    (b) 当V={1, 2}时,最短的4 邻接通路的一种情况如图(c)所示,其长度为6,另一种情况,其长度也为6;8 邻接通路的一种情况如图(d)实线箭头所示,其最短长度为4;m 邻接通路的一种情况如图(d)虚线箭头所示,其最短长度为6.

    3.6试解释为什么离散直方图均衡技术一般不能得到平坦的直方图?

    答:(翻译答案)所有均衡直方图是大规模的映射组件。获得一个统一的直方图要求对像素强度进行重新分配,这样使n/L像素组具有相同的强度,L是离散的强度水平。n=MN是输入图像的总像素。直方图均衡方法没有规定这类(人工)强度的再分配过程。

    (百度答案:)由于离散图像的直方图也是离散的,其灰度累积分布函数是一个不减的阶梯函数。如果映射后的图像仍然能取到所有灰度级,则不发生任何变化。如果映射的灰度级小于256,变换后的直方图会有某些灰度级空缺。即调整后灰度级的概率基本不能取得相同的值,故产生的直方图不完全平坦。

     

    问题3.21

    分别应用n=23、25和45的方形均值掩膜处理下面一幅图像。结果发现当n=23、45时,处理后图像中左下角的垂直竖条被模糊了,但是竖条与竖条之间的分割仍然很清楚。当n=25时,竖条却已经融入了整幅图像,尽管产生这幅图像的掩膜比45小得多,请解释这一现象。

    注:垂直线段是5个像素宽,100个像素高;它们的间隔是20个像素。

    3.22 以下的三幅图像是分别通过n=23,25和45的方形均值掩模处理后的模糊图像。图(a)和(c)中左下角的垂直竖条被模糊了,但竖条与竖条之间的分割仍然很清楚。但图(b)中的竖条却已经融人了整幅图像,尽管产生这幅图像的掩模要比处理图像(c)的小得多,请解释这一现象。

    解:从图可知,垂直线有5个像素宽,100像素高,他们的间隔是20像素。问题是相关的现象与水平之间的间隔线有关,所以我们可以简化问题,考虑一个单一的扫描行通过线的图像。回答这个问题的关键在于实际之间的距离(无像素)开始的线条,下一个(其右面)是25个像素。考虑扫描线,如图,同样显示是一个断面25 x25掩膜。掩膜反应包括的像素是平均的。我们注意到,当一个像素掩膜移动右面,它失去了左边竖线的价值,可是它捡起一个相同的一个在右边,所以反应不会改变。

    事实上,多少像素属于垂直线和包含在掩膜并不会改变,无论在掩膜的任何地方(只要是包含在线内,而不是在边缘附近线)。这一事实的线像素数量低于掩膜并不会改变是由于特有的线条和分隔线之间的宽度的相当于25像素。这个常数宽度的反应是没有看到白色的差距在问题的声明中图像显示的理由。注意这个常数不发生在23 x23或45 x45的掩膜,因为他们不是同步与线条宽度和将它们分开的距离。

    补充注意:在这张图中还有明显的边界现象。这是因为为了使处理后图像大小不变,在原始图像的边缘以外补0,经处理后再去除添加区域的结果。而且滤波器越大边界越宽。

    结论:空间均值处理是为得到感兴趣物体的一个粗略的描述而模糊一幅图像。较小物体与背景混合在一起,较大物体变得像“斑点”而易于检测。而模板的大小由那些将融入背景中去的物体的尺寸决定。

    Problem 5.18 6-2.

    设一幅图像的模糊是由于物体在x方向的匀加速运动产生的。当t=0时物体静止,在t=0到t=T间物体加速度是x0(t)=at2/2,求转移函数H(u,v)。讨论匀速运动和匀加速运动所造成的模糊的不同特点。

    Problem 5.22 6-1.

    成像时由于长时间曝光受到大气干扰而产生的图像模糊可以用转移函数H(u,v)=exp[-(u2+v2)/2σ2]表示。这噪声可忽略,求恢复这类模糊的维纳滤波器的方程。

    噪声可忽略时,维纳滤波器退化成理想的逆滤波器,所以

    答:这是一个简单的插件问题。其目的是熟悉各种维纳滤波器

    问题5.27 6-3.

    一位考古学家在作流通货币方面的研究。最近发现,有4个罗马帝国时期的罗马硬币对它的研究可以起到决定性作用。它们被列在伦敦大英博物馆的馆藏目录中,遗憾的是,他到达那里之后,被告知现在硬币已经被盗了,但博物馆保存了一些照片。只是由于摄取照片时照相机的散焦,硬币的照片是模糊的,无法看清上面小的标记。

    已知用来拍摄图像的原照相机一直能用,另外馆内还有同一时期的其他硬币。你能否帮助教授恢复图像,使他能看清这些标记?请给出解决这一问题的过程。

    这个问题背后的基本思想是使用相机和代表硬币反应动力学的降解过程,利用这个结果对其进行逆滤波器操作。主要步骤如下:

    1。选择和丢失的硬币大小和内容尽可能接近的硬币。选择与丢失的硬币照片有接近的纹理和亮度的背景

    2. 建立摄影相机几何图像库尽可能的接近类似丢失的硬币的图像。获得一些测试的照片。简化实验,获得能够给出类似测试图片图像的电视相机。这可以通过相机与图像处理系统从而生成将在实验中应用的数字图像。

    3。获得每一个硬币的图像有不同的镜头设置。由此产生的图像的角度,大小(这个与背景区域有关)方面与丢失的硬币的模糊照片接近。

    4.在第三步中为每一个图像的镜头设置是对丢失的硬币信息图像模糊处理的模型。每个这样的设置,移动硬币及其背景并用一个规定背景下的小亮点来替代它,或者用另外的机制时期接近于一个光脉冲。数字话这个脉冲。这是模糊处理的变换功能叫傅里叶变换。

    5.数字化丢失硬币的模糊照片得到它的傅里叶变换形式。每个硬币有函数H(u,v)和G(u,v)描述。

    6.用维纳滤波器得到一个近似的F(u,v)。

    7.对每个*F(u,v)进行傅里叶反变换可以得出硬币的恢复图像。通常这样的基本步骤都可以用来解决这样的问题。

     

    6.18 证明彩色图像的补色的饱和度分量不能单独地由输入图像的饱和度分量计算出来。

    我们看到,最基本的问题是许多不同的颜色有相同的饱和度值。在那里纯红、黄、绿、青色、蓝色,洋红都有一个饱和1。也就是说只要任何一个RGB组件是0,将产生一个饱和1。

    考虑RGB颜色(1,0,0)和(0,0.59,0),其代表红色和绿色的映射。HSI颜色值分别为 (0,1,0.33)和(0.33 ,1,0.2)。现在RGB的初始补充值分别为(0、1,1)和(1,0.41,1),相应的颜色是青和洋红。他们的HSI值分别为(0.5, 1,0.66)和(0.83,0.48,0.8)。因此为红色,一个起始饱和度1取得的青色“补充”饱和度1,而为绿色,一个起始饱和度1取得洋红“互补”饱和度0.48。也就是说,起始同样的饱和度值导致两个不同的“互补”饱和度。饱和本身并不是足够的信息计算饱和度补充颜色。

    6.22 假定一个成像系统的监视器和打印机没有完美校准。在该监视器上看起来平衡的一幅图像打印时出现了青色。描述可矫正这种不平衡的通用变换。

    答:我们就可以通过如下几种方法减少黄色的比例(1)减少黄色、(2)增加蓝色、(3)增加青色和洋红、(4)减少红色和绿色

    11.1(a)重新定义链码的一个起始点,以便所得的数字序列形成一个最小整数值。请证明该编码与边界上的初始起点无关

    数字图像一般是按固定间距的网格采集的,所以最简单的链码是顺时针跟踪边界并赋给每两个相邻像素的连线一个方向值。问题的关键是要认识到, 在一个链码中每个元素值是相对于它的前身的值。这个代码的边界,追踪在一个一致的方式(例如,顺时针),是一种独特的循环组编号。在不同的地点开始在这个设定不改变循环序列的结构。选择的最小整数的函数为出发点仅仅识别中同一点序列。即使出发点并非是独一无二的,该方法仍然会给一个独特的序列。例如,101010年有3个不同的序列的起点,但他们都产生相同的最小整数010101。

    (b)求出链码0101030303323232212111的一阶差分

    答: 3131331313031313031300

    4. 求下图中目标的形状数和形状数的阶。

     

    链码: 110003301232

    微分码 303003011113

    形状数 003011113303

    阶 12

    2. 为什么一般情况下对离散图像的直方图均衡化并不能产生完全平坦的直方图?【因为同一个灰度值的各个象素没有理由变换到不同灰度级,所以数字图像的直方图均衡化的结果一般不能得到完全均匀分布的直方图,只是近似均匀的直方图。】

    3. 设已用直方图均衡化技术对一幅数字图像进行了增强,如再用这一方法对所得结果增强会不会改变其结果?【从原理上分析,直方图均衡化所用的变换函数为原始直方图的累积直方图,均衡化后得到的增强图像的累积直方图除有些项合并外,其余项与原始图像的累积直方图相同。如果再次均衡化,所用的变换函数即为均衡化后得到的增强图像的累积直方图(并且不会有新的合并项),所以不会改变其结果。】

    4. 设工业检测中工件的图像受到零均值不相关噪声的影响。如果图像采集装置每秒可采集30幅图像,要采用图像平均法将噪声的均方差减少到1/10,那么工件需保持多长时间固定在采集装置前?

    小结

    傅立叶变换(FFT) 具有快速算法,数字图象处理中最常用。需要复数运算。可把整幅图象的信息很好地用若干个系数来表达。

    余弦变换(DCT) 有快速算法,只要求实数运算。在相关性图象的处理中,最接近最佳的K-L变换,在实现编码和维纳滤波时有用。同DFT一样,可实现很好的信息压缩。

    沃尔什-哈达玛变换(WHT) 在数字图象处理的硬件实现时有用。容易模拟但很难分析。在图象数据压缩、滤波、编码中有应用。信息压缩效果好。

    Haar变换 非常快速的一种变换。在特征抽取、图像编码、图像分析中有用。信息压缩效果平平。

    Slant变换 一种快速变换。图像编码中有用,有很好的信息压缩功能。

    K-L变换(KLT) 在许多意义下是最佳的。无快速算法。在进行性能评估和寻找最佳性能时有用。对小规模的向量有用,如彩色多谱或其他特征向量。对一组图像集而言,具有均方差意义下最佳的信息压缩效果。

    奇异值分解(SVD) 对任何一幅给定的图像而言,具有最佳的信息压缩效果。无快速算法。设计有限冲激响应(FIR)滤波器时,寻找线性方程的最小范数解时有用。潜在的应用是图像恢复,能量估计和数据压缩。

    5-1. 有一种常见的图像增强技术是将高频增强和直方图均衡化结合起来以达到使边缘锐化的反差增强效果,以上两个操作的先后次序对增强效果有影响吗,为什么?【有,高频增强是一种线性操作,但直方图均衡化是一种非线性操作,所以两个操作的先后次序对增强效果有影响,不能互换。】

    5-2. 在天体研究所获得图像中有一些相距很远的对应恒星的亮点。由于大气散射原因而迭加的照度常使得这些亮点很难看清楚。如果将这类图像模型化为恒定亮度的背景和一组脉冲的乘积,根据同态滤波的概念设计一种增强方法将对应恒星的亮点提取出来。

    【恒定亮度的背景对应低频成分,脉冲则对应高频成分,所以对乘积取对数可将两种成分区别开分别处理。根据同态滤波的概念可设计减少低频成分,增加高频成分的滤波器。】

    19为什么伪彩色处理可以达到增强的效果呢?

    由于人眼对彩色的分辨能力远远大于对黑白灰度的分辨率。对于一般的观察者来说。通常能分辨十几级灰度,就是经专业训练的人员也只能分辨几十级灰度。而对于彩色来说,人的眼睛可分辨出上千种彩色的色调和强度。因此,在一幅黑白图像中检测不到的信息,经伪彩色增强后可较容易的被检测出来。

    13如何实现彩色图像灰度直方图匹配(规定化)?

     

    展开全文
  • 图像处理技术在现实中的运用

    千次阅读 2018-11-29 18:07:27
    前言:这是在听完学院有关图像处理之后的一些感想,将技术用在现实当中。 关键词:图像处理,交通 主体: 在校学习期间,学院为了让新生接触更多领域,了解前沿科技,设立新生研讨课。其中,有一节课专门介绍了...
  • • 按图像处理的输入和输出形式,图像处理的基本功能可分为以下几种形式: • 单幅图像输入,进行处理,输出单幅图像。 • 多幅图像输入,进行处理,输出单幅图像。 • 单幅图像输入,进行处理,输出数字或符号等...
  • 数字图像处理技术现状与展望数字图像处理技术现状与展望
  • 数字图像处理技术方法和应用

    万次阅读 2016-11-18 10:56:01
    所谓数字图像处理,是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。20 世纪 50 年代,电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息,这便是早期的图像处理。早期图像处理...
  • BLOB图像处理技术

    2019-06-25 10:59:31
    Blob分析 blob分析就是在一块“光滑”区域内,将出现“灰度突变”的小区域寻找出来。 举例来说,假如现在有一块刚生产出来的玻璃,表面非常光滑,平整。如果这块玻璃上面没有瑕疵,那么,我们是检测不到“灰度突变...
  • 浅谈安防监控中视频图像处理技术

    千次阅读 2019-08-16 08:48:45
    随着计算机软件、硬件技术的日新月异的发展和普及,人类已经进入一个高速发展的信息化时代,人类大概有80%的信息来自图像,科学研究、技术应用中图像处理技术越来越成为不可缺少的手段。安防行业已经进入一个崭新的...
  • 四种主流的视频图像处理技术——北京明景科技 数字视频和数字图像比传统的图像和视频分辨率要高,处理方便,易于操作和整理。但由于部分设备性能不足、客观条件限制等因素,在实际的视频监控应用中,仍会出现...
  • 摘要:随着数字图像处理技术的不断发展,以图像处理技术为主的交通视频监测技术的研究已成为智能交通系统的重要前沿研究领域。针对智能交通系统、数字图像处理技术的特点,我们可以着重分析研究数字图像处理技术在...
  • 电子科技大学 格拉斯哥学院 2017级 甘诗语 (一)前言 21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。因此,如何获得准确的图像也...图像处理技术...
  • 数字图像处理技术

    千次阅读 2018-11-25 19:28:31
    数字图像处理技术 所谓数字图像处理,是指利用计算机对图像进行分析、加工、和处理,使其满足视觉、心理或其他要求的技术,主要有去除噪声、增强、复原、分割、提取特征等处理的方法。20 世纪 50 年代,电子计算机...
  • 计算机图像处理技术入门(一)

    万次阅读 2006-05-19 10:06:00
    图像处理简介 计算机数字图像处理...现在,图像处理技术在航空航天、军事、工业自动化检测、安全识别、娱乐等领域得到广泛应用。 在图像处理领域,对图像的基本操作是图像变换和图像分析。前者用某种方式改变图像,
  • 数字图像处理技术与人脸识别

    千次阅读 2018-11-29 23:38:40
    数字图像处理技术与人脸识别 电子科技大学 格拉斯哥学院 2017/2018级 耿逸飞 2017200602025 序言 如今,随着科技的迅速发展,各大手机厂商对智能手机的研发也愈发深入。传统的手机解锁方式已经不足以满足各大手机...
  • 图像处理技术在视频监视中的应用

    千次阅读 2013-10-18 13:34:48
    本文介绍上海凯视力成信息科技有限公司多年专心研究积累的一些工程化的图像处理技术在视频监视方面的一些应用。 1.视频跟踪技术  自动视频跟踪是通过图像处理算法,实时计算出选定的目标(如人、车辆等)在图像中...
  • 3D图像处理无疑是现代电脑技术中发展最快的领域,3D图像处理技术的进步让我们离在电脑上实时生成具有电影画面质量的3D游戏场景的目标越来越近。过去那些要高端3D图形处理工作站花费好几个小时才能完成
  • 数字图像处理技术内容与发展现状

    千次阅读 2012-05-15 12:58:14
    目前,图像处理技术已经在许多不同的应用领域中得到重视,并取得了巨大成就。根据应用领域要求的不同,数字图像处理技术可以分为许多分支技术。重要的分支技术有: (1)图像变换。图像阵列很大时,若直接在空域中...
1 2 3 4 5 ... 20
收藏数 253,271
精华内容 101,308
关键字:

图像处理技术