图像处理的研究热点

2013-03-20 05:07:30 wxx199101046 阅读数 14302
  • 综合布线系统优点

    网规下午案例分析出题思路紧跟技术发展脉搏,对热点技术都有所涉及。本课程对网规下午案例分析中的考点做了详细的讲解,通过在重要考点中穿插历年真题的强化讲解,帮助考生掌握考点的同时实时的感受了网规案例分析...

    13人学习 徐朋
    免费试看

最近版上有不少人在讨论图像处理的就业方向,似乎大部分都持悲观的态度。我想结合我今年找工作的经验谈谈我的看法。
就我看来,个人觉得图像处理的就业还是不错的。首先可以把图像看成二维、三维或者更高维的信号,从这个意义上来说,图像处理是整个信号处理里面就业形势最好的,因为你不仅要掌握(一维)信号处理的基本知识,也要掌握图像处理(二维或者高维信号处理)的知识。其次,图像处理是计算机视觉和视频处理的基础,掌握好了图像处理的基本知识,就业时就可以向这些方向发展。目前的模式识别,大部分也都是图像模式识别。在实际应用场合,采集的信息很多都是图像信息,比如指纹、条码、人脸、虹膜、车辆等等。说到应用场合,千万不能忘了医学图像这一块,如果有医学图像处理的背景,去一些医疗器械公司或者医疗软件公司也是不错的选择。图像处理对编程的要求比较高,如果编程很厉害,当然就业也多了一个选择方向,并不一定要局限在图像方向。
下面谈谈我所知道的一些公司信息,不全,仅仅是我所了解到的或者我所感兴趣的,实际远远不止这么多。
搜索方向
基于内容的图像或视频搜索是很多搜索公司研究的热点。要想进入这个领域,必须有很强的编程能力,很好的图像处理和模式识别的背景。要求高待遇自然就不错,目前这方面的代表公司有微软、google、yahoo和百度,个个鼎鼎大名。
医学图像方向
目前在医疗器械方向主要是几个大企业在竞争,来头都不小,其中包括Simens、GE、飞利浦和柯达,主要生产CT和MRI等医疗器材。由于医疗器械的主要功能是成像,必然涉及到对图像的处理,做图像处理的很有机会进入这些公司。它们在国内都设有研发中心,simens的在上海和深圳,GE和柯达都在上海,飞利浦的在沈阳。由于医疗市场是一个没有完全开发的市场,而一套医疗设备的价格是非常昂贵的,所以在这些地方的待遇都还可以,前景也看好。国内也有一些这样的企业比如深圳安科和迈瑞
计算机视觉和模式识别方向
我没去调研过有哪些公司在做,但肯定不少,比如指纹识别、人脸识别、虹膜识别。还有一个很大的方向是车牌识别,这个我倒是知道有一个公司高德威智能交通似乎做的很不错的样子。目前视频监控是一个热点问题,做跟踪和识别的可以在这个方向找到一席之地。
上海法视特位于上海张江高科技园区,在视觉和识别方面做的不错。北京的我也知道两个公司:大恒和凌云,都是以图像作为研发的主体。
视频方向
一般的高校或者研究所侧重在标准的制定和修改以及技术创新方面,而公司则侧重在编码解码的硬件实现方面。一般这些公司要求是熟悉或者精通MPEG、H.264或者AVS,选择了这个方向,只要做的还不错,基本就不愁饭碗。由于这不是我所感兴趣的方向,所以这方面的公司的信息我没有收集,但平常在各个bbs或者各种招聘网站经常看到。
我所知道的两个公司:诺基亚和pixelworks


其实一般来说,只要涉及到成像或者图像的基本都要图像处理方面的人。比方说一个成像设备,在输出图像之前需要对原始图像进行增强或者去噪处理,存储时需要对图像进行压缩,成像之后需要对图像内容进行自动分析,这些内容都是图像处理的范畴。下面列举一些与图像有关或者招聘时明确说明需要图像处理方面人才的公司:上海豪威集成电路有限公司(www.ovt.com.cn)、中芯微、摩托罗拉上海研究院、威盛(VIA)、松下、索尼、清华同方、三星。

所有与图像(静止或者运动图像)有关的公司都是一种选择。比如数码相机、显微镜成像、超声成像、工业机器人控制、显示器、电视、遥感等等,都可以作为求职方向。
要求:
1、外语。如果进外企,外语的重要性不言而喻。一般外企的第一轮面试都是英语口语面试。
2、编程。这方面尤以C++为重,很多公司的笔试都是考c++知识。
3、专业水平。如果要找专业相关的工作,研究生期间的研究经历和发表的论文就显的比较重要。
4、知识面的宽度。我觉得在研究生期间,除了做好自己的研究方向之外,扩宽一下知识面也有很大的帮助,当然这个知识面指的是图像处理、计算机视觉和模式识别,知识面越宽,就业时的选择就会越多。
图像处理方向毕业的就业面非常广,而且待遇在应届生应该是中上等。其实还是一句话,能力决定一切。只要研究生三年没有白过,根本不愁找不到好工作。祝所有正在读研或者即将读研的朋友将来都能有一份满意的工作。
我说点不好的 呵呵 版主的说法我同意 都是正面的
反面的来说:现在大学和研究机构做图象的越来越多了,这里面老板自己懂图象的不知道有多少?!老板不懂,影响还是很大的
多数做图象的是用MATLAB,用别人的代码(如小波)。在研究生三年学好C++毕业的有多少?在公司C++是重要的。
图象其实就是信号处理,除了本科是学信号的以外,信号与系统、数字信号处理是一定要学好的,那相应的数学方面的概率,多元统计,甚至泛函也要了解。
外语的基本要求是看懂英文文献(不一定全看懂),相应的英文书。去外企做研发,这是必备的。然后是口语和听力。
说这些不是波冷水,希望大家了解清楚。
Compared to the number of jobs available each year in the imaging soceity, the people who are majoring on it are way too much. I have to say most of the people who studied the this area were not end up with working on this area anymore.
The most important thing here is to understand image processing, it requires a broad level of knowledge including, some math (algrebra, statistics, PDE), dsp, pattern recognition, programming skills...
It is all these background skills will find you a job, so prepare to have a deep understanding on all these areas related to image processing
我也是学模式识别的,但是研究方向是遥感图像处理和识别.总的来说这个方向是比较专,但也是目前图像处理中比较难做的一个方向,因为遥感图像的复杂性超过我们所见过的任何图像.
其实谈到就业问题,我觉得如果研究方向比较适合,特别是读研期间能到斑竹谈的那些牛比的公司实习,了解企业真正需要的方向可能做起来有目标性.
顺便提下:高德威公司还是不要考虑,因为本人在毕业面试过程中,虽然面试的人力资源人员很友善,但是通过他们老板写的一些文章可以发现他们还是一个比较自恋和自大的公司.
楼主是好人,不过此文更多是安慰,新手不可太当真
衡量专业好坏的标准有两个:应用前景和技术门槛。个人觉得图像处理应用前景一般,比通信,计算机差远了,而技术门槛,相信不是新手都清楚,比微波之类低不少。总的来说图像方向就业一般,在it业算较冷得,特别是模式识别,人工智能之类,看起来高深邪乎,其实就是博士都不好找工作(亲身所见)

1)说到图像处理比通信差,很大部分的原因是当前行业背景,但通信真正的研发在中国又有多少,我的朋友中很多做工程的,况且现在在通信领域,很大的一个难点,也是多媒体通信。
2)说到比计算机差,我觉得这与你怎么看待计算机专业有关,有人觉得是基础,是工具,有人觉得是专业。况且计算机那边,现在研究图像的也不少。
3)再者,说微波,RFID等入门难,但要做精又谈何容易,而且兴趣真的很重要,没有兴趣,再有前景的专业,你也不一定能做好,还有女生并不适合搞这个,就业时,单位一般会暗示。另外,就业面也较窄,好公司真的难进,找工的时候,真的很郁闷,特别对女生。或许将来很大发展前途,这个另当别论。
4)说回图像处理,我觉得还是较中肯的,略有好的嫌疑,关键还是在读研的时候能把方向做宽(一般做图像处理,需要何模式识别等相结合,拓宽知识面是必要的,在真正做研究的时候,也发现是必须的),研究点做深入,注重实现能力、创新能力和学习能力,通过论文。多培养自己的材料组织提炼能力,锻炼逻辑思维。如果真的能做到三年光阴不虚度,找工应该不是问题,到时真正要考虑的是定位问题。
5)当然,最后,找工的时候,包装是一种技巧,整合是一种需要。
我觉得做图像处理还是很有前途的。

 

作图像处理方面的研究工作,最重要的两个问题:其一是要把握住国际上最前沿的内容;其二是所作工作要具备很高的实用背景。解决第一个问题的办法就是找出这个方向公认最牛的几个超级大拿(看看他们都在作什么)和最权威的出版物(阅读上面最新的文献),解决第二个问题的办法是你最好能够找到一个实际应用的项目,边做边写文章。

做好这几点的途径之一就是充分利用网络资源,特别是权威网站和大拿们的个人主页。下面是我收集的一些资源,希望对大家有用。(这里我要感谢SMTH AI版的alamarik和Graphics版的faintt)

导航栏: [1]研究群体、[2]大拿主页、[3]前沿期刊、[4]GPL软件资源、[5]搜索引擎。

一、研究群体
http://www-2.cs.cmu.edu/~cil/vision.html
这是卡奈基梅隆大学的计算机视觉研究组的主页,上面提供很全的资料,从发表文章的下载到演示程序、测试图像、常用链接、相关软硬件,甚至还有一个搜索引擎。

http://www.cmis.csiro.au/IAP/zimage.htm 
这是一个侧重图像分析的站点,一般。但是提供一个Image Analysis环境---ZIMAGE and SZIMAGE。

http://www.via.cornell.edu/
康奈尔大学的计算机视觉和图像分析研究组,好像是电子和计算机工程系的。侧重医学方面的研究,但是在上面有相当不错资源,关键是它正在建设中,能够跟踪一些信息。

http://www2.parc.com/istl/groups/did/didoverview.shtml
有一个很有意思的项目:DID(文档图像解码)。

http://www-cs-students.stanford.edu/
斯坦福大学计算机系主页,自己找吧:(

http://www.fmrib.ox.ac.uk/analysis/
主要研究:Brain Extraction Tool,Nonlinear noise reduction,Linear Image Registration,

Automated Segmentation,Structural brain change analysis,motion correction,etc.

http://www.cse.msu.edu/prip/
这是密歇根州立大学计算机和电子工程系的模式识别--图像处理研究组,它的FTP上有许多的文章(NEW)。

http://pandora.inf.uni-jena.de/p/e/index.html
德国的一个数字图像处理研究小组,在其上面能找到一些不错的链接资源。

http://www-staff.it.uts.edu.au/~sean/CVCC.dir/home.html 
CVIP(used to be CVCC for Computer Vision and Cluster Computing) is a research group focusing on cluster-based computer vision within the Spiral Architecture.

http://cfia.gmu.edu/
The mission of the Center for Image Analysis is to foster multi-disciplinary research in image, multimedia and related technologies by establishing links

between academic institutes, industry and government agencies, and to transfer key technologies to

help industry build next

generation commercial and military imaging and multimedia systems.

http://peipa.essex.ac.uk/info/groups.html 
可以通过它来搜索全世界各地的知名的计算机视觉研究组(CV Groups),极力推荐。

二、图像处理GPL库
http://www.ph.tn.tudelft.nl/~klamer/cppima.html
Cppima 是一个图像处理的C++函数库。这里有一个较全面介绍它的库函数的文档,当然你也可以下载压缩的GZIP包,里面包含TexInfo格式的文档。

http://iraf.noao.edu/
Welcome to the IRAF Homepage! IRAF is the Image Reduction and Analysis Facility, a general purpose software

system for the reduction and analysis of astronomical data.

http://entropy.brni-jhu.org/tnimage.html 
一个非常不错的Unix系统的图像处理工具,看看它的截图。你可以在此基础上构建自己的专用图像处理工具包。

http://sourceforge.net/projects/
这是GPL软件集散地,到这里找你想要得到的IP库吧。

三、搜索资源
当然这里基本的搜索引擎还是必须要依靠的,比如Google等,可以到我常用的链接看看。下面的链接可能会节省你一些时间:

http://sal.kachinatech.com/
http://cheminfo.pku.edu.cn/mirrors/SAL/index.shtml
四、大拿网页
http://www.ai.mit.edu/people/wtf/
这位可是MIT人工智能实验室的BILL FREEMAN。大名鼎鼎!专长是:理解--贝叶斯模型。

http://www.merl.com/people/brand/
MERL(Mitsubishi Electric Research Laboratory)中的擅长“Style Machine”高手。

http://research.microsoft.com/~ablake/
CV界极有声望的A.Blake 1977年毕业于剑桥大学三一学院并或数学与电子科学学士学位。之后在MIT,Edinburgh,Oxford先后组建过研究小组并成为Oxford的教授,直到1999年进入微软剑桥研究中心。主要工作领域是计算机视觉。

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/har/Web/home.html 
这位牛人好像正在学习汉语,并且搜集了诸如“两只老虎(Two Tigers)”的歌曲,嘿嘿:)
他的主页上面还有几个牛:Shumeet Baluja, Takeo Kanade。他们的Face Detection作的绝对是世界一流。他毕业于卡奈基梅隆大学的计算机科学系,兴趣是计算机视觉。

http://www.ifp.uiuc.edu/yrui_ifp_home/html/huang_frame.html
这位老牛在1963年就获得了MIT的博士学位!他领导的Image Lab比较出名的是指纹识别。

--------------------------------------------------------------------------------

下面这些是我搜集的牛群(大部分是如日中天的Ph.D们),可以学习的是他们的Study Ways!

Finn Lindgren(Sweden):Statistical image analysis http://www.maths.lth.se/matstat/staff/finn/
Pavel Paclik(Prague):statistical pattern recognition http://www.ph.tn.tudelft.nl/~pavel/
Dr. Mark Burge:machine learning and graph theory http://cs.armstrong.edu/burge/
yalin Wang:Document Image Analysis http://students.washington.edu/~ylwang/
Geir Storvik: Image analysis http://www.math.uio.no/~geirs/
Heidorn http://alexia.lis.uiuc.edu/~heidorn/
Joakim Lindblad:Digital Image Cytometry http://www.cb.uu.se/~joakim/index_eng.html
S.Lavirotte: http://www-sop.inria.fr/cafe/Stephane.Lavirotte/
Sporring:scale-space techniques http://www.lab3d.odont.ku.dk/~sporring/
Mark Jenkinson:Reduction of MR Artefacts http://www.fmrib.ox.ac.uk/~mark/
Justin K. Romberg:digital signal processing http://www-dsp.rice.edu/~jrom/
Fauqueur:Image retrieval by regions of interest http://www-rocq.inria.fr/~fauqueur/
James J. Nolan:Computer Vision http://cs.gmu.edu/~jnolan/
Daniel X. Pape:Information http://www.bucho.org/~dpape/
Drew Pilant:remote sensing technology http://www.geo.mtu.edu/~anpilant/index.html

五、前沿期刊(TOP10)
这里的期刊大部分都可以通过上面的大拿们的主页间接找到,在这列出主要是为了节省直接想找期刊投稿的兄弟的时间:)

IEEE Trans. On PAMI http://www.computer.org/tpami/index.htm
IEEE Transactionson Image Processing http://www.ieee.org/organizations/pubs/transactions/tip.htm
Pattern Recognition http://www.elsevier.com/locate/issn/00313203
Pattern Recognition Letters http://www.elsevier.com/locate/issn/01678655

 

神经网络

Neural Networks Tutorial Review 
http://hem.hj.se/~de96klda/NeuralNetworks.htm 
ftp://ftp.sas.com/pub/neural/FAQ.html


Image Compression with Neural Networks 
http://www.comp.glam.ac.uk/digimaging/neural.htm


Backpropagator's Review 
http://www.dontveter.com/bpr/bpr.html


Bibliographies on Neural Networks 
http://liinwww.ira.uka.de/bibliography/Neural/


Intelligent Motion Control with an Artificial Cerebellum 
http://www.q12.org/phd.html


Kernel Machines 
http://www.kernel-machines.org/


Some Neural Networks Research Organizations 
http://www.ieee.org/nnc/ 
http://www.inns.org/


Neural Network Modeling in Vision Research 
http://www.rybak-et-al.net/nisms.html


Neural Networks and Machine Learning 
http://learning.cs.toronto.edu/


Neural Application Software 
http://attrasoft.com


Neural Network Toolbox for MATLAB 
http://www.mathworks.com/products/neuralnet/


Netlab Software 
http://www.ncrg.aston.ac.uk/netlab/


Kunama Systems Limited 
http://www.kunama.co.uk/

 

Computer Vision

Computer Vision Homepage, Carnegie Mellon University
www.cs.cmu.edu/~cil/vision.html

Annotated Computer Vision Bibliography 
http://iris.usc.edu/Vision-Notes/bibliography/contents.html 
http://iris.usc.edu/Vision-Notes/rosenfeld/contents.html

Lawrence Berkeley National Lab Computer Vision and Robotics Applications 
http://www-itg.lbl.gov/ITG.hm.pg.docs/VISIon/vision.html

CVonline by University of Edinburgh 
The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision, www.dai.ed.ac.uk/CVonline

Computer Vision Handbook, www.cs.hmc.edu/~fleck/computer-vision-handbook

Vision Systems Courseware 
www.cs.cf.ac.uk/Dave/Vision_lecture/Vision_lecture_caller.html

Research Activities in Computer Vision 
http://www-syntim.inria.fr/syntim/analyse/index-eng.html

Vision Systems Acronyms 
www.vision-systems-design.com/vsd/archive/acronyms.html

Dictionary of Terms in Human and Animal Vision 
http://cns-web.bu.edu/pub/laliden/WWW/Visionary/Visionary.html

Metrology based on Computer Vision 
www.cranfield.ac.uk/sme/amac/research/metrology/metrology.html

Digital Photography

Digital Photography, Scanning, and Image Processing 
www.dbusch.com/scanners/scanners.html

 

Educational Resources, Universities

Center for Image Processing in Education 
www.cipe.com 
Library of Congress Call Numbers Related to Imaging Science by Rochester Institute of Technology 
http://wally2.rit.edu/pubs/guides/imagingcall.html

Mathematical Experiences through Image Processing, University of Washington 
www.cs.washington.edu/research/metip/metip.html

Vismod Tech Reports and Publications, MIT 
http://vismod.www.media.mit.edu/cgi-bin/tr_pagemaker

Vision Lab PhD dissertation list, University of Antwerp 
http://wcc.ruca.ua.ac.be/~visielab/theses.html

INRIA (France) Research Projects: Human-Computer Interaction, Image Processing, Data Management, Knowledge Systems 
www.inria.fr/Themes/Theme3-eng.html

Image Processing Resources 
http://eleceng.ukc.ac.uk/~rls3/Contents.htm

Publications of Carsten Steger 
http://www9.informatik.tu-muenchen.de/people/steger/publications.html

FAQs

comp.dsp FAQ 
www.bdti.com/faq/dsp_faq.htm 
Robotics FAQ 
www.frc.ri.cmu.edu/robotics-faq

Where's the sci.image.processing FAQ? 
www.cc.iastate.edu/olc_answers/packages/graphics/sci.image.processing.faq.html

comp.graphics.algorithms FAQ, Section 3, 2D Image/Pixel Computations 
www.exaflop.org/docs/cgafaq

Astronomical Image Processing System FAQ 
www.cv.nrao.edu/aips/aips_faq.html

2018-03-09 11:03:56 qq_16481211 阅读数 5825
  • 综合布线系统优点

    网规下午案例分析出题思路紧跟技术发展脉搏,对热点技术都有所涉及。本课程对网规下午案例分析中的考点做了详细的讲解,通过在重要考点中穿插历年真题的强化讲解,帮助考生掌握考点的同时实时的感受了网规案例分析...

    13人学习 徐朋
    免费试看

在这里插入图片描述

机器视觉和图像处理的研究工作,做到以下两点非常重要:
1、把握国际最前沿的内容
2、所做的工作具备很高的实用性

上述两点的解决方法分别为:找到这个方向公认成就最高的几个超级专家;找到实际应用的项目,边做边写文章
做好这几点的途径之一就是利用网络资源,利用权威网站和专家们的个人主页;

以下大家收集了机器视觉和图像处理领域的核心材料。

依照下面目录整理:
[1] 研究群体(国际国内)
[2] 专家主页
[3] 前沿国际国内期刊与会议
[4] 搜索资源
[5] GPL 软件资源

【1】研究群体

用来搜索国际知名计算机视觉研究组(CV Groups):

国际计算机视觉研究组清单
http://peipa.essex.ac.uk/info/groups.html

美国计算机视觉研究组清单
http://peipa.essex.ac.uk/info/groups.html#USA

这是卡奈基梅隆大学的计算机视觉研究组的主页,上面提供很全的资料,从发表文章的下载到演示程序、测试图像、常用链接、相关软硬件,甚至还有一个搜索引擎。著名的有人物 Tomasi, Kanade 等。
http://www-2.cs.cmu.edu/~cil/vision.html
或 http://www.cs.cmu.edu/~cil/vision.html

卡内基梅隆大学双目实验室
http://vision.middlebury.edu/stereo/

卡内基梅隆研究组
http://www.cs.cmu.edu/~cil/v-groups.html

还有几个实验室:
Calibrated Imaging Laboratory 图像
Digital Mapping Laboratory 映射
Interactive Systems Laboratory 互动
Vision and Autonomous Systems Center 视觉自适应
Cornell University——Robotics and Vision group

康奈尔大学的计算机视觉和图像分析研究组,好像是电子和计算机工程系的。侧重医学方面的研究,但是在上面有相当不错资源,关键是它正在建设中,能够跟踪一些信息。
http://www.via.cornell.edu/

斯坦福大学计算机系
The Stanford AI Lab (SAIL) is the intellectual home for researchers in the Stanford Computer Science Department whose primary research focus is Artificial Intelligence. The lab is located in the Gates…
http://www-cs-students.stanford.edu/

  1. http://white.stanford.edu/
  2. http://vision.stanford.edu/

美国斯坦福大学人工智能机器人实验室
3. http://ai.stanford.edu/
Vision and Imaging Science and Technology
http://www.fmrib.ox.ac.uk/analysis/

密歇根州立大学计算机和电子工程系的模式识别–图像处理研究组,它的 FTP 上有许多的文章(NEW)
主要研究:Brain Extraction Tool,Nonlinear noise reduction,Linear Image Registration,Automated Segmentation,Structural brain change analysis,motion correction,etc.
http://www.cse.msu.edu/prip/—

美国密歇根州大学认知模型和图像处理实验室
The Pattern Recognition and Image Processing (PRIP) Lab faculty and students investigate the use of machines to recognize patterns or objects. Methods are developed to sense objects, to discover which…
http://www.cse.msu.edu/rgroups/prip/

德国的一个数字图像处理研究小组,在其上面能找到一些不错的链接资源。
http://pandora.inf.uni-jena.de/p/e/index.html
柏林大学
http://www.cv.tu-berlin.de/

德国波恩大学视觉和认识模型小组
Computer Vision Group located within the Division III of the Computer Science Department in the University of Bonn in Germany. This server offers information on topics concerning our computer vision
http://www-dbv.informatik.uni-bonn.de/
http://www-staff.it.uts.edu.au/~sean/CVCC.dir/home.html
CVIP(used to be CVCC for Computer Vision and Cluster Computing) is a research group focusing on cluster-based computer vision within the Spiral Architecture.
http://cfia.gmu.edu/
The mission of the Center for Image Analysis is to foster multi-disciplinary research in image,multimedia and related technologies by establishing links between academic institutes,industry and government agencies,and to transfer key technologies to help industry build next generation commercial and military imaging and multimedia systems.

英国的Bristol大学的Digital Media Group在高级图形图像方面不错。主要就是涉及到场景中光线计算的问题,比如用全局光照或是各种局部光照对高动态图的处理,还有近似真实的模拟现实环境 (照片级别的),还有用几张照片来建立3D模型(人头之类的)。另外也有对古代建筑模型复原。
http://www.cs.bristol.ac.uk/Research/Digitalmedia/
而且根据Times全英计算机排名在第3, 也算比较顶尖的研究了
http://www.cmis.csiro.au/IAP/zimage.htm

这是一个侧重图像分析的站点,一般。但是提供一个Image Analysis环境—ZIMAGE and SZIMAGE。
麻省理工视觉实验室
MIT http://groups.csail.mit.edu/vision/welcome/
AI Laboratory Computer Vision group
Center for Biological and Computational Learning
Media Laboratory, Vision and Modeling Group
Perceptual Science group
UC Berkeley
http://0-vision.berkeley.edu.ilstest.lib.neu.edu/vsp/index.html
http://www.cs.berkeley.edu.ilste … n/vision_group.html

加州大学伯克利分校视觉实验室David A. Forsyth:
http://www.cs.berkeley.edu/~daf/
UCLA(加州大学洛杉矶分校) 视觉实验室
http://vision.ucla.edu
英国牛津的A.Zisserman:机器人实验室
http://www.robots.ox.ac.uk/~az/
美国南加州大学智能机器人和智能系统研究所 University of Southern California, Los Angeles
IRIS is an interdepartmental unit of USC’s School of Engineering with ties to USC’s Information Sciences Institute (ISI). Members include faculty, graduate students, and research staff associated with…
http://iris.usc.edu/ Computer Vision

美国南加州大学计算机视觉实验室介绍:
Computer Vision Laboratory at the University of Southern California is one of the major centers of computer vision research for thirty years. they conduct research in a number of basic and applied are…
http://iris.usc.edu/USC-Computer-Vision.html
英国约克大学高级计算机结构神经网络小组
The Advanced Computer Architecture Group has had a thriving research programme in neural networks for over 10 years. The 15 researchers, led by Jim Austin, focus their work in the theory and applicati…
http://www.cs.york.ac.uk/arch/neural/
瑞士戴尔莫尔感知人工智能研究所
IDIAP is a research institute established in Martigny in the Swiss Alps since 1991. Active in the areas of multimodal interaction and multimedia information management, the institute is also the leade…
http://www.idiap.ch/

英国萨里大学视觉,语言和信号处理中心
The Centre for Vision, Speech and Signal Processing (CVSSP) is more than 60 members strong, comprising 12 academic staff, 18 research fellows and more than 44 research students. The activities of the …
http://www.ee.surrey.ac.uk/Research/VSSP/

美国阿默斯特马萨诸塞州立大学计算机视觉实验室
The Computer Vision Laboratory was established in the Computer Science Department at the University of Massachusetts in 1974 with the goal of investigating the scientific principles underlying the con…
http://vis-www.cs.umass.edu
University of Massachusetts——Computer Vision Laboratory for Perceptual Robotics
美国芝加哥伊利诺伊斯大学贝克曼研究中心智能机器人和计算机视觉实验室
Includes the following groups: Professor Seth Hutchinson’s Research Group Professor David Kriegman’s Research Group Professor Jean Ponce’s Research Group Professor Narendra Ahuja’s Research Gro…
http://www-cvr.ai.uiuc.edu/
Computer Vision and Robotics Laboratory
Vision Interfaces and Systems Laboratory (VISLab)

英国伯明翰大学计算机科学学校视觉研究小组
The vision group at the School of Computer Science (a RAE 5 rated department) performs research into a wide variety of computer vision and image understanding areas. Much of this work is performed in …
http://www.cs.bham.ac.uk/research/vision/
微软研究院机器学习与理解研究小组 / 计算机视觉小组
The research group focuses on the development of more advanced and intelligent computer systems through the exploitation of statistical methods in machine learning and computer vision. The site lists …
http://research.microsoft.com/mlp/
http://research.microsoft.com/en-us/groups/vision/

微软公司的文献:
http://research.microsoft.com/research/pubs
微软亚洲研究院:
http://research.microsoft.com/asia/

值得关注Harry Shum, Jian Sun, Steven Lin, Long Quan(兼职HKUST)etc.感觉国外搞视觉的好多是数学系出身,大约做计算机视觉对数学要求很高吧。
瑞典隆德大学数学系视觉组:
http://www.maths.lth.se/matematiklth/personal/andersp/

澳大利亚国立大学:
http://users.rsise.anu.edu.au/~hartley/

美国北卡大学:
http://www.cs.unc.edu/~marc/

法国INRIA:由Olivier.Faugeras领衔的牛人众多。
http://www-sop.inria.fr/odyssee/team/

比利时鲁汶大学的L.Van Gool:
www.esat.kuleuven.ac.be/psi/visics/

据说在这个只有中国一个小镇大小的地方的鲁汶大学在欧洲排行top10,名列世界top100,还出了几个诺贝尔奖,视觉研究也很强.
美国明德
http://vision.middlebury.edu/stereo/

以下含有非顶尖美国学校研究组,没有链接(个别的上面已经提到),供参考。
Amerinex Applied Imaging, Inc.Boston University
Image and Video Computing Research group,

University of California at Santa Barbara加州大学芭芭拉分校
Vision Research Lab

University of California at San Diego加州大学圣迭戈分校
Computer Vision & Robotics Research Laboratory
Visual Computing laboratory

University of California at Irvine加州大学欧文分校,加州南部一城,在圣安娜东南,
Computer Vision laboratory

University of California, Riverside加州大学河滨分校

Visualization and Intelligent Systems Laboratory (VISLab)
University of California at Santa Cruz
Perceptual Science Laboratory
Caltech (加州理工)
Vision group
University of Central Florida
Computer Vision laboratory
University of Florida
Center for Computer Vision and Visualization

Colorado State University
Computer Vision group

Columbia University
Automated Vision Environment (CAVE)
Robotics group

University of Georgia, Athens
Visual and Parallel Computing Laboratory

Harvard University(哈佛)
Robotics Laboratory

University of Illinois at Urbana-Champaign
Robotics and Computer Vision

University of Iowa
Division of Physiologic Imaging
Jet Propulsion Laboratory
Machine Vision and Tracking Sensors group
Khoral Research, Inc
Lawrence Berkeley Laboratories
Imaging and Collaborative Computing Group
Imaging and Distributed Computing

Lehigh University
Image Processing and Pattern Analysis Lab
Vision And Software Technology Laboratory

University of Louisville
Computer Vision and Image Processing Lab

University of Maryland
Computer Vision Laboratory

University of Miami
Underwater Vision and Imaging Laboratory

University of Michigan密歇根
AI Laboratory

Michigan State University 密歇根州立
Pattern Recognition and Image Processing laboratory
Environmental Research Institute of Michigan (ERIM) 密歇根大学有汽车车身检测研究

University of Missouri-Columbia
Computational Intelligence Research Laboratory
NEC
Computer Vision and Image Processing

University of Nevada
Computer Vision Laboratory
Notre-Dame University
Vision-Based Robotics using Estimation
Ohio State University
Signal Analysis and Machine Perception Laboratory

University of Pennsylvania
GRASP laboratory
Medical Image Processing group
Vision Analysis and Simulation Technologies (VAST) Laboratory

Penn State University 宾夕法尼亚大学
Computer Vision
Precision Digital Images

Purdue University普渡大学
Robot Vision laboratory
Video and Image Processing Laboratory (VIPER)

Rensselaer Polytechnic Institute (RPI)
Computer Science Vision

University of Rochester
Center for Electronic Imaging Systems
Vision and Robotics laboratory
Rutgers University (The State University of New Jersey)
Image Understanding Lab

University of Southern California
Computer Vision

University of South Florida
Image Analysis Research group
Stanford Research Institute International (SRI)
RADIUS – Research and Development for Image Understanding Systems
The Perception program at SRI’s AI Center
SUNY at Stony Brook
Computer Vision Lab

University of Tennessee
Imaging, Robotics and Intelligent Systems laboratory

University of Texas, Austin
Laboratory for Vision Systems
University of Utah
Center for Scientific Computing and Imaging
Robotics and Computer Vision

University of Virginia
Computer Vision Research (CS)

University of Washington
Image Computing Systems Laboratory
Information Processing Laboratory
CVIA Laboratory

University of West Florida
Image Analysis/Robotics Research Laboratory

University of Wisconsin
Computer Vision group

Vanderbilt University
Center for Intelligent Systems

Washington State University
Imaging Research laboratory
Wright-Patterson
Model-Based Vision laboratory

Wright State University
Intelligent Systems Laboratory

University of Wyoming

Wyoming Image and Signal Processing Research (WISPR)

Yale University
Computational Vision Group http://www.cs.yale.edu/
School of Medicine, Image Processing and Analysis group
国内:

中科院模式识别国家重点实验室
http://www.nlpr.ia.ac.cn/English/rv/mainpage.html

虹膜识别、掌纹识别、人脸识别、
莲花山http://www.stat.ucla.edu/~sczhu/Lotus/

天津大学精密测试技术及仪器国家重点实验室
研究方向包括:激光及光电测试技术、传感及测量信息技术、微纳测试与制造技术、制造质量控制技术。该实验室是国内精密测试领域惟一的国家重点实验室。
“智能微系统及其集成应用技术”、“微结构光学测试技术”、“油气储运安全检测技术”、“先进制造中的视觉测量及其关键技术”、“正交偏振激光器原理、特性及其在精密计量中的应用研究”等5项代表性成果(07.3)。

中科院长春光机所
http://www.ciomp.ac.cn/ny/keyan.asp

中科院沈阳自动化所
http://www.sia.ac.cn/index.php

中科院西安光机所
http://www.opt.ac.cn/yanjiushi/gpcxjs1.htm

北京大学智能科学系:三维视觉计算与机器人,生物特征识别与图像识别
http://www.cis.pku.edu.cn/vision/vision.htm

【2】专家网页

这位可是MIT人工智能实验室的BILL FREEMAN。专长是:理解–贝叶斯模型。
http://www.ai.mit.edu/people/wtf/

MERL(Mitsubishi Electric Research Laboratory)中的擅长“Style Machine”。
http://www.merl.com/people/brand/

CV界极有声望的A.Blake 1977年毕业于剑桥大学三一学院并或数学与电子科学学士学位。之后在MIT,Edinburgh,Oxford先后组建过研究小组并成为Oxford的教授,直到1999年进入微软剑桥研究中心。主要工作领域是计算机视觉。
http://research.microsoft.com/~ablake/

这位专家好像正在学习汉语,主页并且搜集了诸如“两只老虎(Two Tigers)”的歌曲。
他的主页上面还有几个专家:Shumeet Baluja, Takeo Kanade。他们的Face Detection作的绝对是世界一流。毕业于卡奈基梅隆大学的计算机科学系,兴趣是计算机视觉。
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/har/Web/home.html

【3】前沿国际国内期刊与会议

这里的期刊大部分都可以通过上面的专家们的主页间接找到
1.国际会议 2.国际期刊 3.国内期刊 4.神经网络 5.CV 6.数字图象 7.教育资源,大学 8.常见问题国际会议
1.国际会议

现在,国际上计算机视觉方面的三大国际会议是ICCV, CVPR和ECCV,统称之为ICE。
ICCV的全称是International Comference on Computer Vision。ICCV两年一次,与ECCV正好错开,是公认的三个会议中级别最高的。

ECCV的全称是Europeon Conference on Computer Vision,是一个欧洲的会议。

CVPR的全称是Internaltional Conference on Computer Vision and Pattern Recogintion国际计算机视觉与模式识别会议。这是一个一年一次的会议,举办地在美国。

ICIP—
BMVC—
MVA—

国际模式识别会议(ICPR ):

亚洲计算机视觉会议(ACCV):

2.国际期刊

以计算机视觉为主要内容之一的国际刊物也有很多,如:
International Journal of Computer Vision
IEEE Trans. On PAMI
http://www.computer.org/tpami/index.htm

IEEE Transactionson Image Processing
http://www.ieee.org/organizations/pubs/transactions/tip.htm

Pattern Recognition
http://www.elsevier.com/locate/issn/00313203

Pattern Recognition Letters
http://www.elsevier.com/locate/issn/01678655

IEEE Trans. on Robotics and Automation,
IEEE TPAMI
IEEE TIP
CVGIP Computer Vision. Graphics and Image Processing,
Visual Image Computing,
IJPRAI(Internatiorial Journat of Pattern Recognition and Artificial Intelligence)

众所周知, computer vision(cv) 存在ICCV/CVPR/ECCV三个顶级会议,它们档次差不多,都应该在一流会议行列, 没有必要给个高下。有些us的人认为ICCV/CVPR略好于ECCV,而欧洲人大都认为ICCV/ECCV略好于CVPR,某些英国的人甚至认为BMVC好于CVPR。简言之, 三个会议差不多, 各有侧重和偏好。

笔者就个人经验浅谈三会异同, 以供大家参考和讨论。 三者乃cv领域的旗舰和风向标,其oral paper (包括best paper) 代表当年度cv的最高水准, 在此引用Harry Shum的一句话, 想知道某个领域在做些什么,找最近几年此领域的proceeding看看就知道了。 ICCV/CVPR由IEEE Computer Society牵头组织, ECCV好像没有专门负责的组织。 CVPR每年(除2002年)都在美国开, ECCV每两年开一次,仅限欧洲, ICCV也是每两年一次,各洲轮值。 基本可以保证每年有两个会议开, 这样研究者就有两次跻身牛会的机会。

就录取率而言, 三会都有波动。 如ICCV2001录取率>30%,且出现两个人(华人)各有三篇第一作者的paper的情况, 这在顶级牛会是不常见的 (灌水嫌疑)。 但是, ICCV2003, 2005两次录取率都很低, 大约20%左右。 ECCV也是类似规律, 在2004年以前都是>30%, 2006年降低到20%左右。 CVPR的录取率近年来一直偏高,从2004年开始一直都在[25%,30%]。最近一次CVPR2006是28.1%, CVPR2007还不知道统计数据。笔者猜测为了维持录取paper的绝对数量, 当submission少的时候录取率偏高, 反之偏低,近几年三大会议的投稿数量全部超过1000, 相对2000年前, 三会录取率均大幅度降低,最大幅度50%->20%。 对录取率走势感兴趣的朋友, 可参考
http://vrlab.epfl.ch/~ulicny/statistics/(CVPR2004的数据是错的)。
http://www.adaptivebox.net/research/bookmark/CICON_stat.html.

显然, 投入cv的人越来越多,这个领域也是越来越大, 这点颇不似machine learning一直奉行愚蠢的小圈子主义。另外
一点值得注意, ICCV/ECCV只收vision相关的topic,而cvpr会收少量的pattern recognition paper, 如finger print等,但是不收和image/video完全不占边的pr paper,如speech recognition等。我一个朋友曾经review过一篇投往CVPR的speech的paper, 三个reviewer一致拒绝,其中一个reviewer搞笑的指出, 你这篇paper应该是投ICASSP被据而转投CVPR的。 就topic而言, CVPR涵盖最广。 还有一个没有验证过的原因导致CVPR录取率高: 很多us的researcher不愿意或没有足够的经费到us以外的地方开会, 故CVPR会优先接收很多来自us的paper (让大家都happy)。

以上对三会的分析对我们投paper是很有指导作用的。 目前的research我想绝大部分还是纸上谈兵, 必经 read paper -> write paper -> publish paper -> publish paper on top conferences and journals流程。故了解投paper的一些基本技巧, 掌握领域的走向和热点, 是非常必要的。 避免做无用功,选择切合的topic,改善presentation, 注意格式 (遵守规定的模板), 我想这是很多新手需要注意的问题。如ICCV2007明文规定不写summary page直接reject, 但是仍然有人忽视, 这是相当不值得的。

3.国内期刊

自动化学报、计算机学报、软件学报、电子学报,中国图象图形学报,模式识别与人工智能,光电子激光,精密光学工程等。

4.神经网络

神经网络-Neural Networks Tutorial Review
http://hem.hj.se/~de96klda/NeuralNetworks.htm
ftp://ftp.sas.com/pub/neural/FAQ.html

Image Compression with Neural Networks
http://www.comp.glam.ac.uk/digimaging/neural.htm

Backpropagator’s Review
http://www.dontveter.com/bpr/bpr.html

Bibliographies on Neural Networks
http://liinwww.ira.uka.de/bibliography/Neural/

Intelligent Motion Control with an Artificial Cerebellum
http://www.q12.org/phd.html

Kernel Machines
http://www.kernel-machines.org/

Some Neural Networks Research Organizations
http://www.ieee.org/nnc/
http://www.inns.org/

Neural Network Modeling in Vision Research
http://www.rybak-et-al.net/nisms.html

Neural Networks and Machine Learning
http://learning.cs.toronto.edu/

Neural Application Software
http://attrasoft.com

Neural Network Toolbox for MATLAB
http://www.mathworks.com/products/neuralnet/

Netlab Software
http://www.ncrg.aston.ac.uk/netlab/

Kunama Systems Limited
http://www.kunama.co.uk/

5.Computer Vision(计算机视觉)

Annotated Computer Vision Bibliography
http://iris.usc.edu/Vision-Notes/bibliography/contents.html
http://iris.usc.edu/Vision-Notes/rosenfeld/contents.html

Lawrence Berkeley National Lab Computer Vision and Robotics Applications
http://www-itg.lbl.gov/ITG.hm.pg.docs/VISIon/vision.html

CVonline by University of Edinburgh
The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision,
www.dai.ed.ac.uk/CVonline

Computer Vision Handbook,
www.cs.hmc.edu/~fleck/computer-vision-handbook

Vision Systems Courseware
www.cs.cf.ac.uk/Dave/Vision_lecture/Vision_lecture_caller.html

Research Activities in Computer Vision
http://www-syntim.inria.fr/syntim/analyse/index-eng.html

Vision Systems Acronyms
www.vision-systems-design.com/vsd/archive/acronyms.html

Dictionary of Terms in Human and Animal Vision
http://cns-web.bu.edu/pub/laliden/WWW/Visionary/Visionary.html

Metrology based on Computer Vision
www.cranfield.ac.uk/sme/amac/research/metrology/metrology.html

6.Digital Photography 数字图像

Digital Photography, Scanning, and Image Processing
www.dbusch.com/scanners/scanners.htm l

7.Educational Resources,Universities 教育资源,大学

Center for Image Processing in Education
www.cipe.com

Library of Congress Call Numbers Related to Imaging Science by Rochester Institute of Technology
http://wally2.rit.edu/pubs/guides/imagingcall.html

Mathematical Experiences through Image Processing, University of Washington
www.cs.washington.edu/research/metip/metip.html

Vismod Tech Reports and Publications, MIT
http://vismod.www.media.mit.edu/cgi-bin/tr_pagemaker

Vision Lab PhD dissertation list, University of Antwerp
http://wcc.ruca.ua.ac.be/~visielab/theses.html

INRIA (France) Research Projects: Human-Computer Interaction, Image Processing, Data Management, Knowledge Systems
www.inria.fr/Themes/Theme3-eng.html

Image Processing Resources
http://eleceng.ukc.ac.uk/~rls3/Contents.htm

Publications of Carsten Steger
http://www9.informatik.tu-muench … r/publications.html

8.FAQs(常见问题)

comp.dsp FAQ
www.bdti.com/faq/dsp_faq.htm

Robotics FAQ
www.frc.ri.cmu.edu/robotics-faq

Where’s the sci.image.processing FAQ?
www.cc.iastate.edu/olc_answers/p … processing.faq.html

comp.graphics.algorithms FAQ, Section 3, 2D Image/Pixel Computations
www.exaflop.org/docs/cgafaq

Astronomical Image Processing System FAQ
www.cv.nrao.edu/aips/aips_faq.html

【4】搜索资源

http://sal.kachinatech.com/
北京大学:

http://cheminfo.pku.edu.cn/mirrors/SAL/index.shtml

Google输入:
computer vision 或computer vision groups可以获得很多结果

网络资源:

视觉研究组列表

CVonline http://homepages.inf.ed.ac.uk/rbf/CVonline/
卡内基梅隆标准图片库

Computer vision test Image http://www.cs.cmu.edu/~cil/v-images.html
视觉论文搜索:Paper search

http://www.researchindex.com

【5】图像处理GPL库

Cppima 是一个图像处理的C++函数库。这里有一个较全面介绍它的库函数的文档,当然你也可以下载压缩的GZIP包,里面包含TexInfo格式的文档。
http://www.ph.tn.tudelft.nl/~klamer/cppima.html

Welcome to the IRAF Homepage! IRAF is the Image Reduction and Analysis Facility, a general purpose software system for the reduction and analysis of astronomical data
http://iraf.noao.edu/

一个非常不错的Unix系统的图像处理工具,看看它的截图。你可以在此基础上构建自己的专用图像处理工具包。
http://entropy.brni-jhu.org/tnimage.html

这是GPL软件集散地,可以搜索IP库。
http://sourceforge.net/projects/

2018-10-09 02:42:22 mao_hui_fei 阅读数 6472
  • 综合布线系统优点

    网规下午案例分析出题思路紧跟技术发展脉搏,对热点技术都有所涉及。本课程对网规下午案例分析中的考点做了详细的讲解,通过在重要考点中穿插历年真题的强化讲解,帮助考生掌握考点的同时实时的感受了网规案例分析...

    13人学习 徐朋
    免费试看

数字图像处理应用领域

图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。

1)航天和航空方面

航天和航空技术方面的应用数字图像处理技术在航天和航空技术方面的应用,除了JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。从60年代末以来,美国及一些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。因此,以如此昂贵的代价进行简单直观的判读来获取图像是不合算的,而必须采用数字图像处理技术。如LANDSAT系列陆地卫星,采用多波段扫描器(MSS),在900km高空对地球每一个地区以18天为一周期进行扫描成像,其图像分辨率大致相当于地面上十几米或100米左右(如1983年发射的LANDSAT-4,分辨率为30m)。这些图像在空中先处理(数字化,编码)成数字信号存入磁带中,在卫星经过地面站上空时,再高速传送下来,然后由处理中心分析判读。这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水份和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。中国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。

2)生物医学工程方面

数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。除了上面介绍的CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。此外,在X光肺部图像增晰超声波图像处理心电图分析立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。

3)通信工程方面

当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。具体地讲是将电话、电视和计算机以三网合一的方式在数字通信网上传输。其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达100Mbit/s以上。要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、DPCM编码、变换编码外,国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。

4)工业和工程方面

在工业和工程领域中图像处理技术有着广泛的应用,如自动装配线中检测零件的质量、并对零件进行分类印刷电路板疵病检查弹性力学照片的应力分析流体力学图片的阻力和升力分析邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。其中值得一提的是研制具备视觉、听觉和触觉功能的智能机器人,将会给工农业生产带来新的激励,目前已在工业生产中的喷漆、焊接、装配中得到有效的利用。

5)军事、公安方面

在军事方面图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。

6)文化艺术方面

目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等,现在已逐渐形成一门新的艺术–计算机美术。

7)机器人视觉

机器视觉作为智能机器人的重要感觉器官,主要进行三维景物理解和识别,是目前处于研究之中的开放课题。机器视觉主要用于军事侦察、危险环境的自主机器人邮政、医院和家庭服务的智能机器人,装配线工件识别、定位,太空机器人的自动操作等。

8)视频和多媒体系统

目前,电视制作系统广泛使用的图像处理、变换、合成,多媒体系统中静止图像和动态图像的采集、压缩、处理、存贮和传输等。

9)科学可视化

图像处理和图形学紧密结合,形成了科学研究各个领域新型的研究工具。

10)电子商务

在当前呼声甚高的电子商务中,图像处理技术也大有可为,如身份认证、产品防伪、水印技术等。
总之,图像处理技术应用领域相当广泛,已在国家安全、经济发展、日常生活中充当越来越重要的角色,对国计民生的作用不可低估。

2018-11-19 16:52:25 u010608296 阅读数 280
  • 综合布线系统优点

    网规下午案例分析出题思路紧跟技术发展脉搏,对热点技术都有所涉及。本课程对网规下午案例分析中的考点做了详细的讲解,通过在重要考点中穿插历年真题的强化讲解,帮助考生掌握考点的同时实时的感受了网规案例分析...

    13人学习 徐朋
    免费试看

图像处理(以及机器视觉)在学校里是一个很大的研究方向,很多研究生、博士生都在导师的带领下从事着这方面的研究。另外,就工作而言,也确实有很多这方面的岗位和机会虚位以待。而且这种情势也越来越凸显。那么图像处理到底都研究哪些问题,今天我们就来谈一谈。图像处理的话题其实非常非常广,外延很深远,新的话题还在不断涌现。下面给出的12个大的方向,系我认为可以看成是基础性领域的部分,而且它们之间还互有交叉

1、图像的灰度调节
图像的灰度直方图、线性变换、非线性变换(包括对数变换、幂次变换、指数变换等)、灰度拉伸、灰度均衡、直方图规定化等等)。
例如,直方图规定化(代码请见http://blog.csdn.net/baimafujinji/article/details/41146381)


CLAHE(contrast limited adaptive histogram equalization)自适应的直方图均衡(效果图来自 http://www.cnblogs.com/Imageshop/archive/2013/04/07/3006334.html) 

2、图像的几何变换
图像的平移、图像的镜像、转置、缩放和旋转。这里面其实还包含了插值算法(这是某些几何变换所必须的),例如最邻近插值法、双线性插值法等等)
几何变换同时和图像的滤镜特效是紧密联系的,某些特效的实现本质上就是某种类型的几何变换。例如



3、图像的特效与滤镜
这方面的应用很多,你可以想想Photoshop里面的滤镜。
文献Combining Sketch and Tone for Pencil Drawing Production中给出的将自然图像变成手绘素描图的效果



例如浮雕效果


贴图太烦了,更多效果请见http://blog.csdn.net/baimafujinji/article/details/50500757
4、图像增强
内容包括图像的平滑(简单平均、中值滤波、高斯平滑等)和锐化(例如Laplace方法)等。


增强处理中的很多算法其实和图像复原中的降噪算法是重合的。现在保持边缘(或纹理结构)的平滑算法属于研究热点。像那些美颜相机里的嫩肤算法都是以此为基础的。比较常见的双边滤波(我给出的代码请见http://blog.csdn.net/baimafujinji/article/details/41598455)


基于全变分方法的TV去噪(http://blog.csdn.net/baimafujinji/article/details/42110831)、基于PM方程的非线性扩散去噪(http://blog.csdn.net/baimafujinji/article/details/42110831)等等。

5、图像复原
广义上来说——图像降噪,图像去雾,图像去模糊 都属于这个范畴
去噪实例是我用MagicHouse(http://blog.csdn.net/baimafujinji/article/details/50500757)实现的中值滤波处理椒盐噪声的效果。此外,一些基于非局部均值的降噪算法是当前研究的热点(例如BM3D、NLM等)



图像去模糊(图片取自我的《数字图像处理原理与实践(Matlab版)》)



去雾代码请见(http://blog.csdn.net/baimafujinji/article/details/30060161)或参考我的《数字图像处理原理与实践(Matlab版)》



6、图像的压缩与编码

想想BMP图像如何转换成JPG,JPG如何变成PNG?这些都属于图像压缩编码所要探讨的内容。

7、边缘检测与轮廓跟踪
边缘检测在图像处理中是一个“古老”的话题了,我就不具体给例子了。下面是一个轮廓跟踪的例子



8、图像分割
你可以认为轮廓跟踪也是实现图像分割的一种途径。
这是我在《数字图像处理原理与实践(Matlab版)》中给出的一个例子——用分水岭算法对马铃薯图像进行分割。



9、图像的形态学处理
这也属于一种非常古老的图像处理方式了。包括膨胀、腐蚀、细化、击中/击不中、开/闭运算等。但一些对颗粒状物体进行计数的应用中它仍然非常有效。



10、图像的频域变换(或称正交变换)
傅立叶、离散余弦、沃尔什-哈达玛变换、K-L(卡洛南-洛伊)变换(也称霍特林变换或PCA)、小波变换(小波变换还分很多种,例如Haar小波、Daubechies小波等等)

仅仅进行频域变换其实并没有多大意义,它往往要与具体应用相结合来发挥作用。例如进行图像压缩、嵌入数字水印、进行图像融合、进行图像降噪等等。
例如,利用PCA进行图像压缩的例子请见 http://blog.csdn.net/baimafujinji/article/details/50373143(源代码请见我的博文) 


在比如,利用小波融合对由聚焦失败导致的图像模糊进行修复 (本来左图和中图各有部分看不清,融合后变得可以辨识)源代码可见 http://blog.csdn.net/baimafujinji/article/details/49642111 


11、图像融合
广义上说融合至少包含三部分内容:像上面的基于小波的Fusion我们也认识是融合的一种,另外一种是以隐藏为目的类似嵌入式的融合,第三种是matting。matting有时反义成抠图,其实它最原本的意思就是融合。如果你理解
I = aF +(1-a)B这个融合公式的话,你应该明白我在所什么。这本质上和第二种融合原理是一样的。
狭义上,融合就是指matting。
例如 著名的Possion融合,下图右,如果直接把月亮图贴上天空,矩形边缘是很明显的,融合处理后的左图则很自然。

代码可见 http://blog.csdn.net/baimafujinji/article/details/46787837 

电影技术中常用matting方法来替换人物的场景。例如


12、图像信息安全
主要包括两个内容:1)数字水印(主要用于多媒体的版权保护);2)图像的加密(主要用于图像信息的保护)
例子是我用MagicHouse(http://blog.csdn.net/baimafujinji/article/details/50500757)实现的加密效果



注意上面我们所讨论的领域仅仅是图像处理的范畴,并不涉及机器视觉。所以也没有任何机器学习的内容,有时间我们再继续讨论这方面的东西。

2016-05-21 20:06:59 youyuyixiu 阅读数 1617
  • 综合布线系统优点

    网规下午案例分析出题思路紧跟技术发展脉搏,对热点技术都有所涉及。本课程对网规下午案例分析中的考点做了详细的讲解,通过在重要考点中穿插历年真题的强化讲解,帮助考生掌握考点的同时实时的感受了网规案例分析...

    13人学习 徐朋
    免费试看

1、图像变换

将图像从时域变换到频域。

  • 图像变换的原因
    • 减少图像计算量
    • 获得更有效处理
  • 图像变换的方法
    • 傅里叶变换
    • 沃尔什变换
    • 离散余弦变换
    • 小波变换

2、图像增强和复原

图像增强和复原的目的是为了提高图像的质量,如去噪声、提高图像的清晰度。
图像增强不考虑图像降质的原因,仅突出感兴趣的部分。例如,强化图像的高频分量,可以使图像轮廓清晰,细节明显;强化图像的低频分量可以减少图像的噪声。
图像复原需要对图像降质的原因有一定的了解,一般需要根据降质过程建立“降质模型”,再通过某种滤波方法,达到复原图像的效果。


3、图像分割

图像分割是将图像中有意义的特征部分(如边缘、区域)提取出来,这是进一步进行图像识别、分析和理解的基础。
由于目前还没有一种普遍适用于各种图像的有效分割方法,所以对图像分割的研究仍然是一个热点。


4、图像压缩编码

图像编码压缩技术可以减少图像数据量,便于图像的传输,减少存储量。
压缩既可以在不失真的条件下获得,也可以在允许失真的条件下获得。编码是图像压缩中最重要的方法,它在图像处理技术中发展最早,也比较成熟。

医学图像处理综述

阅读数 4949