2017-01-15 16:29:48 shenhuxi_yu 阅读数 1470
  • 单片机控制第一个外设-LED灯-第1季第6部分

    本课程是《朱有鹏老师单片机完全学习系列课程》第1季第6个课程,主要讲解LED的工作原理和开发板原理图、实践编程等,通过学习目的是让大家学会给单片机编程控制LED灯,并且为进一步学习其他外设打好基础。

    4002 人正在学习 去看看 朱有鹏

51单片机寄存器功能一览表

21个特殊功能寄存器(52系列是26个)不连续地分布在128个字节的SFR存储空间中,地址空间为80H-FFH,在这片SFR空间中,包含有128个位地址空间,地址也是80H-FFH,但只有83个有效位地址,可对11个特殊功能寄存器的某些位作位寻址操作(这里介绍一个技巧:其地址能被8整除的都可以位寻址)。

  在51单片机内部有一个CPU用来运算、控制,有四个并行I/O口,分别是P0P1P2P3,有ROM,用来存放程序,有RAM,用来存放中间结果,此外还有定时/计数器,串行I/O口,中断系统,以及一个内部的时钟电路。在单片机中有一些独立的存储单元是用来控制这些器件的,被称之为特殊功能寄存器(SFR)。这样的特殊功能寄存器51单片机共有21个并且都是可寻址的列表如下(其中带*号的为52系列所增加的特殊功能寄存器):

MCS51单片机的特殊功能寄存器

符号

地址

功能介绍

B

F0H

B寄存器

ACC

E0H

累加器

PSW

D0H

程序状态字

TH2*

CDH

定时器/计数器2(高8位)

TL2*

CCH

定时器/计数器2(低8位)

RCAP2H*

CBH

外部输入(P1.1)计数器/自动再装入模式时初值寄存器高八位

RCAP2L*

CAH

外部输入(P1.1)计数器/自动再装入模式时初值寄存器低八位

T2CON*

C8H

T2定时器/计数器控制寄存器

IP

B8H

中断优先级控制寄存器

P3

B0H

P3口锁存器

IE

A8H

中断允许控制寄存器

P2

A0H

P2口锁存器

SBUF

99H

串行口锁存器

SCON

98H

串行口控制寄存器

P1

90H

P1口锁存器

TH1

8DH

定时器/计数器1(高8位)

TH0

8CH

定时器/计数器1(低8位)

TL1

8BH

定时器/计数器0(高8位)

TL0

8AH

定时器/计数器0(低8位)

TMOD

89H

T0T1定时器/计数器方式控制寄存器

TCON

88H

T0T1定时器/计数器控制寄存器

DPH

83H

数据地址指针(高8位)

DPL

82H

数据地址指针(低8位)

SP

81H

堆栈指针

P0

80H

P0口锁存器

PCON

87H

电源控制寄存器

分别说明如下:

1ACC---是累加器,通常用A表示

  这是个什么东西,可不能从名字上理解,它是一个寄存器,而不是一个做加法的东西,为什么给它这么一个名字呢?或许是因为在运算器做运算时其中一个数一定是在ACC中的缘故吧。它的名字特殊,身份也特殊,稍后在中篇中我们将学到指令,可以发现,所有的运算类指令都离不开它。自身带有全零标志Z,若A0Z1;若A≠0z0。该标志常用作程序分枝转移的判断条件。

2B--一个寄存器

  在做乘、除法时放乘数或除数,不做乘除法时,随你怎么用。

3PSW-----程序状态字。

  这是一个很重要的东西,里面放了CPU工作时的很多状态,借此,我们可以了解CPU的当前状态,并作出相应的处理。它的各位功能请看下表:

PSW 程序状态字

D7

D6

D5

D4

D3

D2

D1

D0

CY

AC

F0

RS1

RS0

OV

P

下面我们逐一介绍各位的用途

CY:进位标志。

8051中的运算器是一种8位的运算器,我们知道,8位运算器只能表示到0-255,如果做加法的话,两数相加可能会超过255,这样最高位就会丢失,造成运算的错误,怎么办?最高位就进到这里来。这样就没事了。有进、借位,CY1;无进、借位,CY0
  例:78H+97H01111000+10010111

AC:辅助进、借位(高半字节与低半字节间的进、借位)

  例:57H+3AH01010111+00111010

F0:用户标志位

由用户(编程人员)决定什么时候用,什么时候不用。
RS1RS0:工作寄存器组选择位

  通过修改PSW中的RS1RS0两位的状态,就能任选一个工作寄存器区。这个特点提高了MCS-51现场保护和现场恢复的速度。对于提高CPU的工作效率和响应中断的速度是很有利的。若在一个实际的应用系统中,不需要四组工作寄存器,那么这个区域中多余单元可以作为一般的数据缓冲器使用。

工作寄存器区选择

RS1

RS0

当前使用的工作寄存器区R0~R7

0

0

0(00~07H)

0

1

1(08~0Fh)

1

0

2(10~17h)

1

1

3(18~1Fh)

0V:溢出标志位

运算结果按补码运算理解。有溢出,OV=1;无溢出,OV0。什么是溢出我们后面的章节会讲到。

P:奇偶校验位

它用来表示ALU运算结果中二进制数位“1”的个数的奇偶性。若为奇数,则P=1,否则为0。运算结果有奇数个1P1;运算结果有偶数个1P0
  例:某运算结果是78H01111000),显然1的个数为偶数,所以P=0

4DPTRDPHDPL--------数据指针

  可以用它来访问外部数据存储器中的任一单元,如果不用,也可以作为通用寄存器来用,由我们自已决定如何使用。分成DPL(8)DPH(8)两个寄存器。用来存放16位地址值,以便用间接寻址或变址寻址的方式对片外数据RAM或程序存储器作64K字节范围内的数据操作。

5P0P1P2P3--------输入输出口(I/O)寄存器

  这个我们已经知道,是四个并行输入/输出口(I/O)的寄存器。它里面的内容对应着管脚的输出。

6IE-----中断充许寄存器
可按位寻址,地址:A8H

IE 中断充许寄存器

B7

B6

B5

B4

B3

B2

B1

B0

EA

-

ET2

ES

ET1

EX1

ET0

EX0

  • EA (IE.7):EA=0时,所有中断禁止(即不产生中断);EA=1时,各中断的产生由个别的允许位决定
  • - (IE.6):保留
  • ET2(IE.5):定时2溢出中断充许(8052用)
  • ES (IE.4):串行口中断充许(ES=1充许,ES=0禁止)
  • ET1(IE.3):定时1中断充许
  • EX1(IE.2):外中断INT1中断充许
  • ET0(IE.1):定时器0中断充许
  • EX0(IE.0):外部中断INT0的中断允许

7IP-----中断优先级控制寄存器
可按位寻址,地址位B8H

IP 中断优先级控制寄存器

B7

B6

B5

B4

B3

B2

B1

B0

-

-

PT2

PS

PT1

PX1

PT0

PX0

  • - (IP.7):保留
  • - (IP.6):保留
  • PT2(IP.5):定时2中断优先(8052用)
  • PS (IP.4):串行口中断优先
  • PT1(IP.3):定时1中断优先
  • PX1(IP.2):外中断INT1中断优先
  • PT0(IP.1):定时器0中断优先
  • PX0(IP.0):外部中断INT0的中断优先

8TMOD-----定时器控制寄存器
不按位寻址,地址89H

TMOD 定时器控制寄存器

B7

B6

B5

B4

B3

B2

B1

B0

GATE

C/T

M1

M0

GATE

C/T

M1

M0

  • GATE :定时操作开关控制位,当GATE=1时,INT0或INT1引脚为高电平,同时TCON中的TR0或TR1控制位为1时,计时/计数器0或1才开始工作。若GATE=0,则只要将TR0或TR1控制位设为1,计时/计数器0或1就开始工作。
  • C/T :定时器或计数器功能的选择位。C/T=1为计数器,通过外部引脚T0或T1输入计数脉冲。C/T=0时为定时器,由内部系统时钟提供计时工作脉冲。
  • M1 、M0:T0、T1工作模式选择位

M1 M0T0T1工作模式选择位

M1

M0

工作模式

0

0

方式013位计数/计时器

0

1

方式,116位计数/计时器

1

0

方式28位自动加载计数/计时器

1

1

方式3,仅适用于T0,定时器0分为两个独立的8位定时器/计数器TH0TL0T1在方式3时停止工作

9TCON-----定时器控制寄存器

可按位寻址,地址位88H

TCON 定时器控制寄存器

B7

B6

B5

B4

B3

B2

B1

B0

TF1

TR1

TF0

TR0

IE1

IT1

IE0

IT0

  • TF1:定时器T1溢出标志,可由程序查询和清零,TF1也是中断请求源,当CPU响应T1中断时由硬件清零。
  • TF0:定时器T0溢出标志,可由程序查询和清零,TF0也是中断请求源,当CPU响应T0中断时由硬件清零。
  • TR1:T1充许计数控制位,为1时充许T1计数。
  • TR0:T0充许计数控制位,为1时充许T0计数。
  • IE1:外部中断1请示源(INT1,P3.3)标志。IE1=1,外部中断1正在向CPU请求中断,当CPU响应该中断时由硬件清“0”IE1(边沿触发方式)。
  • IT1:外部中断源1触发方式控制位。IT1=0,外部中断1程控为电平触发方式,当INT1(P3.3)输入低电平时,置位IE1。
  • IE0:外部中断0请示源(INT0,P3.2)标志。IE0=1,外部中断1正在向CPU请求中断,当CPU响应该中断时由硬件清“0”IE0(边沿触发方式)。
  • IT0:外部中断源0触发方式控制位。IT0=0,外部中断1程控为电平触发方式,当INT0(P3.2)输入低电平时,置位IE0。

10SCON----串行通信控制寄存器

  它是一个可寻址的专用寄存器,用于串行数据的通信控制,单元地址是98H,其结构格式如下:

 

 

SCON 串行通信控制寄存器

D7

D6

D5

D4

D3

D2

D1

D0

 

SM0

SM1

SM2

REN

TB8

RB8

TI

RI

 

(1)SM0SM1:串行口工作方式控制位。
SM0SM1    工作方式
00      方式0-波特率由振荡器频率所定:振荡器频率/12
01      方式1-波特率由定时器T1T2的溢出率和SMOD所定:2SMOD ×(T1溢出率)/32
10      方式2-波特率由振荡器频率和SMOD所定:2SMOD ×振荡器频率/64
11      方式3-波特率由定时器T1T2的溢出率和SMOD所定:2SMOD ×(T1溢出率)/32 
(2)SM2:多机通信控制位。< br>    多机通信是工作于方式2和方式3SM2位主要用于方式2和方式3。接收状态,当串行口工作于方式23,以及SM2=1时,只有当接收到第9位数据(RB8)为1时,才把接收到的前8位数据送入SBUF,且置位RI发出中断申请,否则会将接受到的数据放弃。当SM2=0时,就不管第位数据是0还是1,都难得数据送入SBUF,并发出中断申请。
工作于方式0时,SM2必须为0
(3)REN:允许接收位。< br>    REN用于控制数据接收的允许和禁止,REN=1时,允许接收,REN=0时,禁止接收。
(4)TB8:发送接收数据位8< br>    在方式2和方式3中,TB8是要发送的——即第9位数据位。在多机通信中同样亦要传输这一位,并且它代表传输的地址还是数据,TB8=0为数据,TB8=1时为地址。
(5)RB8:接收数据位8
在方式2和方式3中,RB8存放接收到的第9位数据,用以识别接收到的数据特征。
(6)TI:发送中断标志位。
可寻址标志位。方式0时,发送完第8位数据后,由硬件置位,其它方式下,在发送或停止位之前由硬件置位,因此,TI=1表示帧发送结束,TI可由软件清“0”
(7)RI:接收中断标志位。
可寻址标志位。接收完第8位数据后,该位由硬件置位,在其他工作方式下,该位由硬件置位,RI=1表示帧接收完成。

11PCON-----电源管理寄存器
PCON主要是为CHMOS型单片机的电源控制而设置的专用寄存器,单元地址是87H,其结构格式如下:

 

 

PCON电源管理寄存器结构

D7

D6

D5

D4

D3

D2

D1

D0

 

SMOD

-

-

-

GF1

GF0

PD

IDL

 

  在CHMOS型单片机中,除SMOD位外,其他位均为虚设的,SMOD是串行口波特率倍增位,当SMOD=1时,串行口波特率加倍。系统复位默认为SMOD=0

12T2CON-----T2状态控制寄存器

T2CON 定时器控制寄存器

B7

B6

B5

B4

B3

B2

B1

B0

TF2

EXF2

RCLK

TCLK

EXEN2

TR2

C/T2

CP/RL2

  • TF2:T2溢出中断标志。TF2必须由用户程序清“0”。当T2作为串口波特率发生器时,TF2不会被置“1”。
  • EXF2:定时器T2外部中断标志。EXEN2为1时,当T2EX(P1.1)发生负跳变时置1中断标志DXF2,EXF2必须由用户程序清“0”。
  • TCLK:串行接口的发送时钟选择标志。TCLK=1时,T2工作于波特率发生器方式。
  • RCLK:串行接口的接收时钟选择标志位。RCLK=1时,T2工作于波特率发生器方式。
  • EXEN2:T2的外部中断充许标志。
  • C/T2:外部计数器/定时器选择位。C/T2=1时,T2为外部事件计数器,计数脉冲来自T2(P1.0);C/T2=0时,T2为定时器,振荡脉冲的十二分频信号作为计数信号。
  • TR2:T2计数/定时控制位。TR1为1时充许计数,为0时禁止计数。
  • CP/RL2:捕捉和常数自动再装入方式选择位。为1时工作于捕捉方式,为0时T2工作于常数自动再装入方式。当TCLK或RCLK为1时,CP/RL2被忽略,T2总是工作于常数自动再装入方式。

  下面对T2COND0D2D4D5几位主要控制T2的工作方式,下面对这几位的组合关系进行总结

定时器T2方式选择

RCLK+TCLK

CP/RL2

TR2

工作方式

0

0

1

16位常数自动再装入方式

0

1

1

16位捕捉方式

1

×

1

串行口波特率发生器方式

×

×

0

停止计数

 

 

 


MCS-51与中断有关的寄存器、中断入口地址及编号

1、中断入口地址及编号

 MCS-51在每一个机器周期顺序检查每一个中断源,在机器周期的S6按优先级处理所有被激活的中断请求,此时,如果CPU没有正在处理更高或相同优先级的中断,或者现在的机器周期不是所执行指令的最后一个机器周期,或者CPU不是正在执行RETI指令或访问IEIP的指令(因为按MCS-51中断系统的特性规定,在执行完这些指令之后,还要在继续执行一条指令,才会响应中断),CPU在下一个机器周期响应激活了的最高级中断请求。

  中断响应的主要内容就是由硬件自动生成一条长调用LCALL addr16指令,这里的addr16就是程序存储器中相应的中断区入口地址,这些中断源的服务程序入口地址如下:

  5个中断源的服务程序入口地址

中断源

入口地址

中断号

 

 

 

 

 

 

 

 

外中断0

0003H

0

 

 

 

 

 

 

 

 

定时/计数器0

000BH

1

 

 

 

 

 

 

 

 

外中断1

0013H

2

 

 

 

 

 

 

 

 

定时/计数器1

001BH

3

 

 

 

 

 

 

 

 

串行口中断

0023H

4

 

 

 

 

 

 

 

 

定时/计数器T2

002BH

5

 

 

 

 

 

 

 

 

 

 

   生成LCALL指令后,CPU紧跟着便执行之.首先将PC(程序计数器)的内容压入堆栈保护断点,然后把中断入口地址赋予PCCPU便按新的PC地址(即中断服务程序入口地址)执行程序。

  值得一提的是,各中断区只有8个单元,一般情况下(除非中断程序非常简单),都不可能安装下一个完整的中断服务程序。因此,通常是在这些入口地址区放置一条无条件转移指令,使程序按转移的实际地址去执行真正的中断服务程序。

  对于汇编,中断函数的一般形式为:

 

1.       ORG 中断入口地址      

2.             

3.       AJMP 中断服务程序地址      

4.             

5.       中断服务程序地址:       

6.             

7.       ......     

 

  对于C语言,中断函数的一般形式为:

 

1.       void FunctionName(void) interrupt 中断号 //其中中断号可查表  

2.         

3.       {    

4.         

5.       .........    

6.         

7.       }   

2、与中断有关的寄存器

(1) 定时器控制寄存器TCON

  2  TCON寄存器结构

D7

D6

D5

D4

D3

D2

D1

D0

 

TF1

TR1

TF0

TR0

IE1

IT1

IE0

IT0

 

 

 

  • IE1:外部边沿触发中断1请求标志,其功能和操作类似于TF0。
  • IT1:外部中断1类型控制位,通过软件设置或清除,用于控制外中断的触发信号类型。IT1=1,边沿触发。IT=0是电平触发。
  • IE0:外部边沿触发中断0请求标志,其功能和操作类似于IE1。
  • IT0:外部中断0类型控制位,通过软件设置或清除,用于控制外中断的触发信号类型。其功能和操作类似于IE1。

(2) 中断允许寄存器IE

 

 

  3  IE寄存器结构

D7

D6

D5

D4

D3

D2

D1

D0

 

EA

-

-

ES

ET1

EX1

ET0

EX0

 

 

 

  • EA:中断总控制位,EA=1,CPU开放中断。EA=0,CPU禁止所有中断。
  • ES:串行口中断控制位,ES=1允许串行口中断,ES=0,屏蔽串行口中断。
  • ET1:定时/计数器T1中断控制位。ET1=1,允许T1中断,ET1=0,禁止T1中断。
  • EX1:外中断1中断控制位,EX1=1,允许外中断1中断,EX1=0,禁止外中断1中断。
  • ET0:定时/计数器T0中断控制位。ET1=1,允许T0中断,ET1=0,禁止T0中断。
  • EX0:外中断0中断控制位,EX1=1,允许外中断0中断,EX1=0,禁止外中断0中断。

(3) 中断优选级控制寄存器IP

 

 

  4  IP中断优先级控制寄存器结构

D7

D6

D5

D4

D3

D2

D1

D0

 

-

-

-

PS

PT1

Px1

PT0

PX0

 

 

 

  • PS:串行口中断口优先级控制位,PS=1,串行口中断声明为高优先级中断,PS=0,串行口定义为低优先级中断。
  • PT1:定时器1优先级控制位。PT1=1,声明定时器1为高优先级中断,PT1=0定义定时器1为低优先级中断。
  • PX1:外中断1优先级控制位。PT1=1,声明外中断1为高优先级中断,PX1=0定义外中断1为低优先级中断。
  • PT0:定时器0优先级控制位。PT1=1,声明定时器0为高优先级中断,PT1=0定义定时器0为低优先级中断。
  • PX0:外中断0优先级控制位。PT1=1,声明外中断0为高优先级中断,PX1=0定义外中断0为低优先级中断。

4)串行通信控制寄存器SCON

  它是一个可寻址的专用寄存器,用于串行数据的通信控制,单元地址是98H,其结构格式如下:

 

 

5串行通信控制寄存器SCON

D7

D6

D5

D4

D3

D2

D1

D0

 

SM0

SM1

SM2

REN

TB8

RB8

TI

RI

 

  • TI:发送中断标志位。
    方式0时,发送完第8位数据后,由硬件置位,其它方式下,在发送或停止位之前由硬件置位,因此,TI=1表示帧发送结束,TI可由软件清“0”。
  • RI:接收中断标志位。
    接收完第8位数据后,该位由硬件置位,在其他工作方式下,该位由硬件置位,RI=1表示帧接收完成。

5T2状态控制寄存器T2CON

6 T2定时器控制寄存器T2CON

B7

B6

B5

B4

B3

B2

B1

B0

TF2

EXF2

RCLK

TCLK

EXEN2

TR2

C/T2

CP/RL2

  • TF2:T2溢出中断标志。TF2必须由用户程序清“0”。当T2作为串口波特率发生器时,TF2不会被置“1”。
  • EXF2:定时器T2外部中断标志。EXEN2为1时,当T2EX(P1.1)发生负跳变时置1中断标志DXF2,EXF2必须由用户程序清“0”。
  • EXEN2:T2的外部中断充许标志
2019-04-03 23:03:51 fzf1996 阅读数 207
  • 单片机控制第一个外设-LED灯-第1季第6部分

    本课程是《朱有鹏老师单片机完全学习系列课程》第1季第6个课程,主要讲解LED的工作原理和开发板原理图、实践编程等,通过学习目的是让大家学会给单片机编程控制LED灯,并且为进一步学习其他外设打好基础。

    4002 人正在学习 去看看 朱有鹏

芯片:stm32f103zet6

1、存储单元一般应具有存储数据和读写数据的功能,一般以8位二进制作为一个存储单元,也就是一个字节.每个单元有一个地址,是一个整数编码,可以表示为二进制整数。

2、stm32是32位单片机,说明基本的寄存器是32位的,4字节。内存地址需要4位

3、基址也就是基础地址,最开始的地址,这个查看芯片手册,是人家规定的。

4、偏移,即偏移地址,一般是正整数,也是增加的数字。比如基址是10,偏移是4,地址就是10+4=14.

下面STM32F10xxx中内置外设的起始地址。

每个外设的起始地址就是,每个外设的基址了,当然这个基址也可以再分解为基址和偏移地址。

比如,GPIOB的起始地址是0X4001 0C00,可以分解为

片上外设基地址:0x40000000    GPIO都挂载到APB2总线:APB2偏移:0x10000,RCC在APB2总线的偏移是 0x0C00

GPIOB外设上有什么寄存器呢? 

 

看看其中的CRL寄存器,偏移是0x00 。如果要找GPIOB的CRL寄存器,则起始地址0X4001 0C00+偏移0x00

 

ODR偏移是0x0C,如果要找GPIOB的ODR寄存器,则起始地址0X4001 0C00+偏移0x0C

 来,用用吧。

我就让我的开发板的一个LED闪烁。

电路是这样的

现在要让GPIOB0输出低电平,灯亮,高电平,灯灭。

stm32使用一个外设得使能相应的时钟,即RCC。

我现在要使用GPIOB0,首先使能GPIOB的时钟,时钟也是寄存器控制的啊,查上面的地址表,RCC的基址是

0x40021000,使能GPIOB的时钟,它是由RCC_APB2ENR控制的,因为挂在APB2总线上。偏移是0x18

则RCC_APB2ENR地址:0x40021000+0x18=0x40021018

再设置GPIOB的IO模式,CRL寄存器控制。(CRL控制低8位引脚IO的模式,CRH控制高八位IO的模式,四位控制一个io的模式,一个寄存器控制8个引脚,共32位,一个寄存器)

 设置GPIOB的电平高低,ODR寄存器控制(直接对相应的引脚,写入1或者0就行,1,高电平,0,低电平)

 工程文件结构:起始文件,头文件,源文件

/*  片上外设基地址  */
#define PERIPH_BASE              ((unsigned int)0x40000000)

/*  总线基地址,GPIO都挂载到APB2上 */
#define APB2PERIPH_BASE			(PERIPH_BASE + 0x10000)

/*  GPIOB外设基地址  */
#define GPIOB_BASE				(APB2PERIPH_BASE + 0x0C00)

/*  GPIOB寄存器地址,强制转换成指针  */
#define GPIOB_CRL					*(unsigned int*) (GPIOB_BASE+0x00)
#define GPIOB_CRH					*(unsigned int*) (GPIOB_BASE+0x04)
#define GPIOB_IDR					*(unsigned int*) (GPIOB_BASE+0x08)
#define GPIOB_ODR					*(unsigned int*) (GPIOB_BASE+0x0C)
#define GPIOB_BSRR				*(unsigned int*) (GPIOB_BASE+0x10)
#define GPIOB_BRR					*(unsigned int*) (GPIOB_BASE+0x14)
#define GPIOB_LCKR				*(unsigned int*) (GPIOB_BASE+0x18)

/*  RCC外设基地址   */
#define RCC_BASE					(0x40021000  +  0x1000) 
/* RCC的AHB1时钟使能寄存器地址,强制转换成指针  */
#define RCC_APB2ENR				    *(unsigned int*)(RCC_BASE+0x18)

SystemInit()是为了骗过启动文件,这里应该配置时钟树,下次再讲。 对于那些逻辑运算不懂,看前面的stm32编程要点。

#include "stm32f1.h"

void SystemInit()

{

}

void delay(int t)

{

	 int i;

	 for( ;t>0; t--)

	 for(i=0;i<2000;i++);

}

int main(void)
{
	
	RCC_APB2ENR |= (1<<3);

	//清空控制PB0的端口
	GPIOB_CRL &= ~(0x0F<<(4*0)); 
	//配置PB0为通用推挽输出,速度为50M
	GPIOB_CRL |= (0x03<<(4*0));

	while(1)
	{
		
		GPIOB_ODR =0x00;
		delay(1000);
		
	
		GPIOB_ODR =0x01;
		delay(1000);
		
		
	}
	
}

现在我们怎么算这个偏移呢,我也是理解了好一会,只能说C语言还不够。
有了首地址  0x4002 3830  
也可以直接加偏移量,用宏定义。

在正点原子中,利用的是,结构体的内存对齐原则
**内存对齐,对齐规则是按照成员的声明顺序,依次安排内存,其偏移量为成员大小的整数倍,0看做任何成员的整数倍,最后结构体的大小为最大成员的整数倍**可以参考下面两篇文章。
https://blog.csdn.net/shi2huang/article/details/80290192
https://blog.csdn.net/weixin_40853073/article/details/81451792

好好理解 变量的地址,值,内存,之间的关系。很容易懵。下面会具体举例

再来理解  结构体  RCC_TypeDef 
因为每个寄存器变量都是32位的值,4个字节,所以占4个内存地址

所以每个变量代表的地址偏移量都是4的倍数,例如

```
typedef struct
{
  __IO uint32_t CR;            /*!< RCC clock control register,                                  Address offset: 0x00 */
  __IO uint32_t PLLCFGR;       /*!< RCC PLL configuration register,                              Address offset: 0x04 */
  __IO uint32_t CFGR;          /*!< RCC clock configuration register,                            Address offset: 0x08 */
  __IO uint32_t CIR;           /*!< RCC clock interrupt register,                                Address offset: 0x0C */
  __IO uint32_t AHB1RSTR;      /*!< RCC AHB1 peripheral reset register,                          Address offset: 0x10 */
  __IO uint32_t AHB2RSTR;      /*!< RCC AHB2 peripheral reset register,                          Address offset: 0x14 */
  __IO uint32_t AHB3RSTR;      /*!< RCC AHB3 peripheral reset register,                          Address offset: 0x18 */
  uint32_t      RESERVED0;     /*!< Reserved, 0x1C                                                                    */
  __IO uint32_t APB1RSTR;      /*!< RCC APB1 peripheral reset register,                          Address offset: 0x20 */
  __IO uint32_t APB2RSTR;      /*!< RCC APB2 peripheral reset register,                          Address offset: 0x24 */
  uint32_t      RESERVED1[2];  /*!< Reserved, 0x28-0x2C                                                               */
  __IO uint32_t AHB1ENR;       /*!< RCC AHB1 peripheral clock register,                          Address offset: 0x30 */
  __IO uint32_t AHB2ENR;       /*!< RCC AHB2 peripheral clock register,                          Address offset: 0x34 */
  __IO uint32_t AHB3ENR;       /*!< RCC AHB3 peripheral clock register,                          Address offset: 0x38 */
  uint32_t      RESERVED2;     /*!< Reserved, 0x3C                                                                    */
  __IO uint32_t APB1ENR;       /*!< RCC APB1 peripheral clock enable register,                   Address offset: 0x40 */
  __IO uint32_t APB2ENR;       /*!< RCC APB2 peripheral clock enable register,                   Address offset: 0x44 */
  uint32_t      RESERVED3[2];  /*!< Reserved, 0x48-0x4C                                                               */
  __IO uint32_t AHB1LPENR;     /*!< RCC AHB1 peripheral clock enable in low power mode register, Address offset: 0x50 */
  __IO uint32_t AHB2LPENR;     /*!< RCC AHB2 peripheral clock enable in low power mode register, Address offset: 0x54 */
  __IO uint32_t AHB3LPENR;     /*!< RCC AHB3 peripheral clock enable in low power mode register, Address offset: 0x58 */
  uint32_t      RESERVED4;     /*!< Reserved, 0x5C                                                                    */
  __IO uint32_t APB1LPENR;     /*!< RCC APB1 peripheral clock enable in low power mode register, Address offset: 0x60 */
  __IO uint32_t APB2LPENR;     /*!< RCC APB2 peripheral clock enable in low power mode register, Address offset: 0x64 */
  uint32_t      RESERVED5[2];  /*!< Reserved, 0x68-0x6C                                                               */
  __IO uint32_t BDCR;          /*!< RCC Backup domain control register,                          Address offset: 0x70 */
  __IO uint32_t CSR;           /*!< RCC clock control & status register,                         Address offset: 0x74 */
  uint32_t      RESERVED6[2];  /*!< Reserved, 0x78-0x7C                                                               */
  __IO uint32_t SSCGR;         /*!< RCC spread spectrum clock generation register,               Address offset: 0x80 */
  __IO uint32_t PLLI2SCFGR;    /*!< RCC PLLI2S configuration register,                           Address offset: 0x84 */
  __IO uint32_t PLLSAICFGR;    /*!< RCC PLLSAI configuration register,                           Address offset: 0x88 */
  __IO uint32_t DCKCFGR;       /*!< RCC Dedicated Clocks configuration register,                 Address offset: 0x8C */

} RCC_TypeDef;
```

现在可以理解:RCC->AHB1ENR|=1<<0; 

1、把1左移0位,等于0x00000001
2、和RCC->AHB1ENR的复位值:0x0010 0000相或,等于,0x0010 0001
再赋值给RCC->AHB1ENR
把外设GPIO A 时钟开启

3、RCC->AHB1ENR换成宏定义,
((RCC_TypeDef *) RCC_BASE)->AHB1ENR
RCC_TypeDef->AHB1ENR
换成地址
0x4002 3830

4、这个结构体是32位的所以对它进行32位操作,
0x4002 3830
0x4002 3831
0x4002 3832
0x4002 3833
4个地址的32位bit赋值,0x0010 0001
 


 

 

2014-08-02 13:19:50 mdy09 阅读数 620
  • 单片机控制第一个外设-LED灯-第1季第6部分

    本课程是《朱有鹏老师单片机完全学习系列课程》第1季第6个课程,主要讲解LED的工作原理和开发板原理图、实践编程等,通过学习目的是让大家学会给单片机编程控制LED灯,并且为进一步学习其他外设打好基础。

    4002 人正在学习 去看看 朱有鹏
21个特殊功能寄存器(52系列是26个)不连续地分布在128个字节的SFR存储空间中,地址空间为80H-FFH,在这片SFR空间中,包含有128个位地址空间,地址也是80H-FFH,但只有83个有效位地址,可对11个特殊功能寄存器的某些位作位寻址操作(这里介绍一个技巧:其地址能被8整除的都可以位寻址)。

    在51单片机内部有一个CPU用来运算、控制,有四个并行I/O口,分别是P0、P1、P2、P3,有ROM,用来存放程序,有RAM,用来存放中间结果,此外还有定时/计数器,串行I/O口,中断系统,以及一个内部的时钟电路。在单片机中有一些独立的存储单元是用来控制这些器件的,被称之为特殊功能寄存器(SFR)。这样的特殊功能寄存器51单片机共有21个并且都是可寻址的列表如下(其中带*号的为52系列所增加的特殊功能寄存器):

单片机寄存器
单片机寄存器

单片机寄存器
单片机寄存器

 

 

分别说明如下:

1、ACC---是累加器,通常用A表示

  这是个什么东西,可不能从名字上理解,它是一个寄存器,而不是一个做加法的东西,为什么给它这么一个名字呢?或许是因为在运算器做运算时其中一个数一定是在ACC中的缘故吧。它的名字特殊,身份也特殊,稍后在中篇中我们将学到指令,可以发现,所有的运算类指令都离不开它。自身带有全零标志Z,若A=0则Z=1;若A≠0则z=0。该标志常用作程序分枝转移的判断条件。

2、B--一个寄存器

  在做乘、除法时放乘数或除数,不做乘除法时,随你怎么用。

3、PSW-----程序状态字。

  这是一个很重要的东西,里面放了CPU工作时的很多状态,借此,我们可以了解CPU的当前状态,并作出相应的处理。它的各位功能请看下表:

单片机寄存器

下面我们逐一介绍各位的用途

CY:进位标志。

  8051中的运算器是一种8位的运算器,我们知道,8位运算器只能表示到0-255,如果做加法的话,两数相加可能会超过255,这样最高位就会丢失,造成运算的错误,怎么办?最高位就进到这里来。这样就没事了。有进、借位,CY=1;无进、借位,CY=0
  例:78H+97H(01111000+10010111)

AC:辅助进、借位(高半字节与低半字节间的进、借位)。

  例:57H+3AH(01010111+00111010)

F0:用户标志位

  由用户(编程人员)决定什么时候用,什么时候不用。
RS1、RS0:工作寄存器组选择位

  通过修改PSW中的RS1、RS0两位的状态,就能任选一个工作寄存器区。这个特点提高了MCS-51现场保护和现场恢复的速度。对于提高CPU的工作效率和响应中断的速度是很有利的。若在一个实际的应用系统中,不需要四组工作寄存器,那么这个区域中多余单元可以作为一般的数据缓冲器使用。

单片机寄存器

0V:溢出标志位

  运算结果按补码运算理解。有溢出,OV=1;无溢出,OV=0。什么是溢出我们后面的章节会讲到。

P:奇偶校验位

  它用来表示ALU运算结果中二进制数位“1”的个数的奇偶性。若为奇数,则P=1,否则为0。运算结果有奇数个1,P=1;运算结果有偶数个1,P=0。
  例:某运算结果是78H(01111000),显然1的个数为偶数,所以P=0。

4、DPTR(DPH、DPL)--------数据指针

  可以用它来访问外部数据存储器中的任一单元,如果不用,也可以作为通用寄存器来用,由我们自已决定如何使用。分成DPL(低8位)和DPH(高8位)两个寄存器。用来存放16位地址值,以便用间接寻址或变址寻址的方式对片外数据RAM或程序存储器作64K字节范围内的数据操作。

5、P0、P1、P2、P3--------输入输出口(I/O)寄存器

  这个我们已经知道,是四个并行输入/输出口(I/O)的寄存器。它里面的内容对应着管脚的输出。

6、IE-----中断充许寄存器
可按位寻址,地址:A8H

单片机寄存器

  • EA (IE.7):EA=0时,所有中断禁止(即不产生中断);EA=1时,各中断的产生由个别的允许位决定
  • - (IE.6):保留
  • ET2(IE.5):定时2溢出中断充许(8052用)
  • ES (IE.4):串行口中断充许(ES=1充许,ES=0禁止)
  • ET1(IE.3):定时1中断充许
  • EX1(IE.2):外中断INT1中断充许
  • ET0(IE.1):定时器0中断充许
  • EX0(IE.0):外部中断INT0的中断允许

7、IP-----中断优先级控制寄存器
   可按位寻址,地址位B8H

单片机寄存器

  • - (IP.7):保留
  • - (IP.6):保留
  • PT2(IP.5):定时2中断优先(8052用)
  • PS (IP.4):串行口中断优先
  • PT1(IP.3):定时1中断优先
  • PX1(IP.2):外中断INT1中断优先
  • PT0(IP.1):定时器0中断优先
  • PX0(IP.0):外部中断INT0的中断优先

8、TMOD-----定时器控制寄存器
不按位寻址,地址89H
单片机寄存器

  • GATE :定时操作开关控制位,当GATE=1时,INT0或INT1引脚为高电平,同时TCON中的TR0或TR1控制位为1时,计时/计数器0或1才开始工作。若GATE=0,则只要将TR0或TR1控制位设为1,计时/计数器0或1就开始工作。
  • C/T :定时器或计数器功能的选择位。C/T=1为计数器,通过外部引脚T0或T1输入计数脉冲。C/T=0时为定时器,由内部系统时钟提供计时工作脉冲。
  • M1 、M0:T0、T1工作模式选择位

单片机寄存器

9、TCON-----定时器控制寄存器

可按位寻址,地址位88H
单片机寄存器

  • TF1:定时器T1溢出标志,可由程序查询和清零,TF1也是中断请求源,当CPU响应T1中断时由硬件清零。
  • TF0:定时器T0溢出标志,可由程序查询和清零,TF0也是中断请求源,当CPU响应T0中断时由硬件清零。
  • TR1:T1充许计数控制位,为1时充许T1计数。
  • TR0:T0充许计数控制位,为1时充许T0计数。
  • IE1:外部中断1请示源(INT1,P3.3)标志。IE1=1,外部中断1正在向CPU请求中断,当CPU响应该中断时由硬件清“0”IE1(边沿触发方式)。
  • IT1:外部中断源1触发方式控制位。IT1=0,外部中断1程控为电平触发方式,当INT1(P3.3)输入低电平时,置位IE1。
  • IE0:外部中断0请示源(INT0,P3.2)标志。IE0=1,外部中断1正在向CPU请求中断,当CPU响应该中断时由硬件清“0”IE0(边沿触发方式)。
  • IT0:外部中断源0触发方式控制位。IT0=0,外部中断1程控为电平触发方式,当INT0(P3.2)输入低电平时,置位IE0。

10、SCON----串行通信控制寄存器

  它是一个可寻址的专用寄存器,用于串行数据的通信控制,单元地址是98H,其结构格式如下:

    单片机寄存器

 

(1)SM0、SM1:串行口工作方式控制位。
  SM0,SM1    工作方式
     00      方式0-波特率由振荡器频率所定:振荡器频率/12
     01      方式1-波特率由定时器T1或T2的溢出率和SMOD所定:2SMOD ×(T1溢出率)/32
     10      方式2-波特率由振荡器频率和SMOD所定:2SMOD ×振荡器频率/64
     11      方式3-波特率由定时器T1或T2的溢出率和SMOD所定:2SMOD ×(T1溢出率)/32
(2)SM2:多机通信控制位。< br>    多机通信是工作于方式2和方式3,SM2位主要用于方式2和方式3。接收状态,当串行口工作于方式2或3,以及SM2=1时,只有当接收到第9位数据(RB8)为1时,才把接收到的前8位数据送入SBUF,且置位RI发出中断申请,否则会将接受到的数据放弃。当SM2=0时,就不管第位数据是0还是1,都难得数据送入SBUF,并发出中断申请。
工作于方式0时,SM2必须为0。
(3)REN:允许接收位。< br>    REN用于控制数据接收的允许和禁止,REN=1时,允许接收,REN=0时,禁止接收。
(4)TB8:发送接收数据位8。< br>    在方式2和方式3中,TB8是要发送的——即第9位数据位。在多机通信中同样亦要传输这一位,并且它代表传输的地址还是数据,TB8=0为数据,TB8=1时为地址。
(5)RB8:接收数据位8。
在方式2和方式3中,RB8存放接收到的第9位数据,用以识别接收到的数据特征。
(6)TI:发送中断标志位。
可寻址标志位。方式0时,发送完第8位数据后,由硬件置位,其它方式下,在发送或停止位之前由硬件置位,因此,TI=1表示帧发送结束,TI可由软件清“0”。
(7)RI:接收中断标志位。
可寻址标志位。接收完第8位数据后,该位由硬件置位,在其他工作方式下,该位由硬件置位,RI=1表示帧接收完成。

11、PCON-----电源管理寄存器
   PCON主要是为CHMOS型单片机的电源控制而设置的专用寄存器,单元地址是87H,其结构格式如下:

单片机寄存器
 在CHMOS型单片机中,除SMOD位外,其他位均为虚设的,SMOD是串行口波特率倍增位,当SMOD=1时,串行口波特率加倍。系统复位默认为SMOD=0。

12、T2CON-----T2状态控制寄存器

单片机寄存器

  • TF2:T2溢出中断标志。TF2必须由用户程序清“0”。当T2作为串口波特率发生器时,TF2不会被置“1”。
  • EXF2:定时器T2外部中断标志。EXEN2为1时,当T2EX(P1.1)发生负跳变时置1中断标志DXF2,EXF2必须由用户程序清“0”。
  • TCLK:串行接口的发送时钟选择标志。TCLK=1时,T2工作于波特率发生器方式。
  • RCLK:串行接口的接收时钟选择标志位。RCLK=1时,T2工作于波特率发生器方式。
  • EXEN2:T2的外部中断充许标志。
  • C/T2:外部计数器/定时器选择位。C/T2=1时,T2为外部事件计数器,计数脉冲来自T2(P1.0);C/T2=0时,T2为定时器,振荡脉冲的十二分频信号作为计数信号。
  • TR2:T2计数/定时控制位。TR1为1时充许计数,为0时禁止计数。
  • CP/RL2:捕捉和常数自动再装入方式选择位。为1时工作于捕捉方式,为0时T2工作于常数自动再装入方式。当TCLK或RCLK为1时,CP/RL2被忽略,T2总是工作于常数自动再装入方式。

下面对T2CON的D0、D2、D4、D5几位主要控制T2的工作方式,下面对这几位的组合关系进行总结

单片机寄存器

2019-12-01 15:38:32 Recordretention 阅读数 10
  • 单片机控制第一个外设-LED灯-第1季第6部分

    本课程是《朱有鹏老师单片机完全学习系列课程》第1季第6个课程,主要讲解LED的工作原理和开发板原理图、实践编程等,通过学习目的是让大家学会给单片机编程控制LED灯,并且为进一步学习其他外设打好基础。

    4002 人正在学习 去看看 朱有鹏

1、定时器 寄存器

用来进行计数的
定时器控制寄存器 TCON
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0
前面4个是定时器1,和定时器0的 溢出标志位 和 运行控制位
溢出标志位:就是计数到达了最大(这个要看定时器的模式)它会硬件自动置1,通过软件清零或者进入中断自动置0
运行控制标志位:当TR1/0被置为1的时候启动计时器,置为0的时候关闭计时器

2、定时器控制 寄存器 有很多种工作模式

作用:选择哪种工作模式

具体工作模式如何控制或者叫选择:
GATE C/T M1 M0 GATE C/T M1 M0 (前四个是T1定时器的,后四个是T0 定时器的)
以其中的T1 介绍:
GATE:定时器的额外功能 ,指门控位
C/T :定时器和计数器的选择位(定时器是以内部时钟作为基准来工作的,计数器是以外部脉冲输入来计数的)
M1 M0:工作模式
0 0 :13位定时器,THn8位和TLn的5 位组成13位的定时器
0 1 :

3、串行控制 寄存器

4、电源控制 寄存器

5、中断使能 寄存器 IE

作用:单片机里面有很多个中断功能,比如定时1器中断、串口中断、外部中断,我要用那个中断,就是让那个中断进行工作,就找到中断使能寄存器:
中断使能寄存器的位描述(可位寻址):
EA () ET2 ES ET1 EX1 ET0 EX0
EA: 总中断,只要开中断就需要打开它
ET2: 定时器2的中断使能
ES 
ET1 
EX1 
ET0 
EX0

  涉及一个中断查询序列:

6、中断优先级寄存器

作用:各种中断执行的优先级

7、定时器值寄存器

TH1 TL1 TH0 TL0

2017-06-15 20:10:31 qq_31059475 阅读数 484
  • 单片机控制第一个外设-LED灯-第1季第6部分

    本课程是《朱有鹏老师单片机完全学习系列课程》第1季第6个课程,主要讲解LED的工作原理和开发板原理图、实践编程等,通过学习目的是让大家学会给单片机编程控制LED灯,并且为进一步学习其他外设打好基础。

    4002 人正在学习 去看看 朱有鹏

定时器/计数器工作方式寄存器 TMOD(47页)
位序号 D7 D6 D5 D4 D4 D4 D4 D4
位符号 GATE C/T M1 M0 GATE C/T M1 M0
GATE—-门控制位;
GATE=0,定时器启动与停止仅受 TCON 寄存器中 TRX(X=0,1)来控制;
GATE=1,定时器启动与停止受 TCON 寄存器中 TRX(X=0,1)和外部中断引脚(INT0 或 INT1)的电平状态共同控制; C/T—定时器模式和计数器模式选择位;
C/T=1,为计数器模式;C/T=0,为定时器模式;
M1M0-工作方式选择位
M1 M0 工作方式
0 0 方式 0,为 13 位定时器/计数器
0 1 方式 1,为 16 位定时器/计数器
1 0 方式 2,8 位初值自动重装的 8 位定时器/计数器
1 1 方式 3,仅适用于 T0,分成两个 8 位计数器,T1 停止计数

定时器/计数器控制寄存器 TCON (48页)
位序号 D7 D6 D5 D4 D3 D2 D1 D 位符号 TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 位地址 8FH 8EH 8DH 8CH 8BH 8AH 89H 88H TF1-定时器 1 溢出标志位;(定时器 1 计满溢出,TF=1)
TR1-定时器 1 运行控制位(TR1=1,开启定时器,TR1=0 关闭定时器);
TF0-定时器 0 溢出标志位;
TR0-定时器 0 运行控制位;
IE1-外部中断 1 请求标志;
IT1-外部中断 1 触发方式选择位;
IE0-外部中断 0 请求请求标志位;
IE1-外部中断 0 触发方式选择位;

串行口控制寄存器 SCON
位序号 D7 D6 D5 D4 D3 D2 D1 D0
位符号 SM0 SM1 SM2 REN TB8 RB8 TI RI
SM0,SM1工作方式选择位。
串行口有4种工作方式,它们由SM0,SM1设定
串行口工作方式
SM0 SM1 方式 功能说明
0 0 0 同步移位寄存器方式(通常用于 I/OI/O 口)
0 1 1 10 位异步收发( 8位数据),波特率可变 位数据),波特率可变
1 0 2 11 位异步收发( 9位数据),波特率固定 位数据),波特率固定
1 1 3 11 位异步收发( 9位位数据)波特率可变
SM2多机通信控制位;
REN允许串行接受位( 1,允许; 0,禁止);
TB8方式 2,3 中发送数据的第 9位;
RB8方式 2,3 中接收数据的第 9位;
TI 发送中断标志位(数据完毕, TI 自动置位 自动置位 1,需要软件清零) ;
RI 接收中断标志位(数据完毕, RI 自动置位 自动置位 1,需要软件清零) ;

5、波特率与电源管理寄存器 PCON (87H)
位序号 D7 D6 D5 D4 D3 D2 D1 D0
位符号 SMOD (SMOD0) (LVDF) (P0F) GF1 GF0 PD IDL
SMOD 该位与串口通信波特率有关SMOD=0:串口方式1、2、3 时,波特率正常,SMOD=1:方式123波特率加倍
D654 为STC特有,通常为保留位
CF1,GF0 为一般用途标记。
PD 停止运行控制位,PD=1时进入停止模式(在复位或外中断产生时恢复)。
IDL 闲置模式控制位,IDL=1时进入闲置模式(在复位或重新上电时恢复)。

中断允许控制寄存器—EA
7 6 5 4 3 2 1 0
EA — ET2 ES ET1 EX1 ET0 EX0
位7:EA使能标志,为1则使能所有中断,为0则禁止所有中断
位6:—保留
位5:ET2定时器2中断使能,ET2=1,使能;ET2=0,禁止
位4:ES 串行通讯中断使能,ES=1,使能;ES=0,禁止
位3:ET1定时器1中断使能,ET=1,使能;ET=0,禁止
位2:EX1 外部中断1中断使能,EX1=1,使能;EX1=0,禁止
位1:ET0定时器0中断使能,ET0=1,使能;ET0=0,禁止
位0:EX0 外部中断0中断使能,EX0=1,使能;EX0=0,禁止

中断优先级寄存器—IP
7 6 5 4 3 2 1 0
— — PT2 PS PT1 PX1 PT0 PX0
位7:—保留
位6:—保留
位5:PT2定时器2中断优先级
位4:PS串行通讯中断优先级
位3:PT1定时器1中断优先级
位2:PX1外部中断1优先级
位1:PT0定时器0中断优先级
位0:PX0 外部中断0

单片机寄存器设置

阅读数 1476

单片机寄存器

阅读数 1113

单片机相关寄存器

阅读数 452

没有更多推荐了,返回首页