深度信念网络_深度信念网络程序实现 - CSDN
精华内容
参与话题
  • 深度信念网络

    2018-03-07 14:14:44
    1.初识深度信念网络 深度信念网络是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型...

    1.初识深度信念网络

      深度信念网络是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。

      DBNs由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的网络结构如图1所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。

     
    图1

    2.需要面对的问题

    对于在深度神经网络应用传统的BP算法的时候,DBN遇到了以下问题:

    (1)需要为训练提供一个有标签的样本集;

    (2)学习过程较慢;

    (3)不适当的参数选择会导致学习收敛于局部最优解。

    Solution:

      首先,先不考虑最顶构成一个联想记忆(associative memory)的两层,一个DBN的连接是通过自顶向下的生成权值来指导确定的,RBMs就像一个建筑块一样,相比传统和深度分层的sigmoid信念网络,它能易于连接权值的学习。

      最开始的时候,通过一个非监督贪婪逐层方法去预训练获得生成模型的权值,非监督贪婪逐层方法被Hinton证明是有效的,并被其称为对比分歧(contrastive divergence)。

     
    图2

       在这个训练阶段,在可视层会产生一个向量v,通过它将值传递到隐层。反过来,可视层的输入会被随机的选择,以尝试去重构原始的输入信号。最后,这些新的可视的神经元激活单元将前向传递重构隐层激活单元,获得h(在训练过程中,首先将可视向量值映射给隐单元;然后可视单元由隐层单元重建;这些新可视单元再次映射给隐单元,这样就获取新的隐单元。执行这种反复步骤叫做吉布斯采样)。这些后退和前进的步骤就是我们熟悉的Gibbs采样,而隐层激活单元和可视层输入之间的相关性差别就作为权值更新的主要依据。

      训练时间会显著的减少,因为只需要单个步骤就可以接近最大似然学习。增加进网络的每一层都会改进训练数据的对数概率,我们可以理解为越来越接近能量的真实表达。这个有意义的拓展,和无标签数据的使用,是任何一个深度学习应用的决定性的因素。

      在最高两层,权值被连接到一起,这样更低层的输出将会提供一个参考的线索或者关联给顶层,这样顶层就会将其联系到它的记忆内容。而我们最关心的,最后想得到的就是判别性能,例如分类任务里面。

      在预训练后,DBN可以通过利用带标签数据用BP算法去对判别性能做调整。在这里,一个标签集将被附加到顶层(推广联想记忆),通过一个自下向上的,学习到的识别权值获得一个网络的分类面。这个性能会比单纯的BP算法训练的网络好。这可以很直观的解释,DBNs的BP算法只需要对权值参数空间进行一个局部的搜索,这相比前向神经网络来说,训练是要快的,而且收敛的时间也少。

    3.详细训练算法流程

     
    图3

      在训练时, Hinton采用了逐层无监督的方法来学习参数。如图3所示,首先把数据向量x和第一层隐藏层作为一个RBM, 训练出这个RBM的参数(连接x和h1的权重, x和h1各个节点的偏置等等), 然后固定这个RBM的参数, 把h1视作可见向量, 把h2视作隐藏向量, 训练第二个RBM, 得到其参数, 然后固定这些参数, 训练h2和h3构成的RBM, 具体的训练算法如下:

      CD的训练过程中用到了Gibbs 采样,即在训练过程中,首先将可视向量值映射给隐单元,然后用隐层单元重建可视向量,接着再将可视向量值映射给隐单元……反复执行这种步骤。

      k-Gibbs的过程如下:

      其中,P是model distribution,是training set distribution

      DBN训练算法:

      DBN运用CD算法逐层进行训练,得到每一层的参数Wi和ci用于初始化DBN,之后再用监督学习算法对参数进行微调。

    4.经典网络结构

      经典的DBN网络结构是由若干层 RBM 和一层 BP 组成的一种深层神经网络, 结构如下图4所示.

     
    图4

      DBN 在训练模型的过程中主要分为两步:

      第 1 步:分别单独无监督地训练每一层 RBM 网络,确保特征向量映射到不同特征空间时,都尽可能多地保留特征信息;

      第 2 步:在 DBN 的最后一层设置 BP 网络,接收 RBM 的输出特征向量作为它的输入特征向量,有监督地训练实体关系分类器.而且每一层 RBM 网络只能确保自身层内的 权值对该层特征向量映射达到最优,并不是对整个 DBN 的特征向量映射达到最优,所以反向传播网络还将错误信息自顶向下传播至每一层 RBM,微调整个 DBN 网络.RBM 网络训练模型的过程可以看作对一个深层 BP 网络权值参数的初始化,使DBN 克服了 BP 网络因随机初始化权值参数而容易陷入局部最优和训练时间长的缺点.

      上述训练模型中第一步在深度学习的术语叫做预训练,第二步叫做微调。最上面有监督学习的那一层,根据具体的应用领域可以换成任何分类器模型,而不必是BP网络。

    5.拓展

      DBN的灵活性使得它的拓展比较容易。一个拓展就是卷积DBNs(Convolutional Deep Belief Networks(CDBN))。DBN并没有考虑到图像的2维结构信息,因为输入是简单的从一个图像矩阵一维向量化的。而CDBN就是考虑到了这个问题,它利用邻域像素的空域关系,通过一个称为卷积RBM的模型区达到生成模型的变换不变性,而且可以容易得变换到高维图像。DBN并没有明确地处理对观察变量的时间联系的学习上,虽然目前已经有这方面的研究,例如堆叠时间RBMs,以此为推广,有序列学习的dubbed temporal convolutionmachines,这种序列学习的应用,给语音信号处理问题带来了一个让人激动的未来研究方向。

      目前,和DBN有关的研究包括堆叠自动编码器,它是通过用堆叠自动编码器来替换传统DBN里面的RBM。这就使得可以通过同样的规则来训练产生深度多层神经网络架构,但它缺少层的参数化的严格要求。与DBN不同,自动编码器使用判别模型,这样这个结构就很难采样输入采样空间,这就使得网络更难捕捉它的内部表达。但是,降噪自动编码器却能很好的避免这个问题,并且比传统的DBN更优。它通过在训练过程添加随机的污染并堆叠产生场泛化性能。训练单一的降噪自动编码器的过程和RBM训练生成模型的过程一样。

    展开全文
  • DBN深度信念网络介绍

    千次阅读 2019-06-25 17:10:57
    使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,这是目前非常流行的方法。下面的术语,将把自联想网络称作自编码网络autoencoder.。通过层叠自编码网络的深度网络在深度学习里另外...

     DBN神经网络模型

    使用BP算法单独训练每一层的时候,我们发现,必须丢掉网络的第三层,才能级联自联想神经网络。然而,有一种更好的神经网络模型,这就是受限玻尔兹曼机。使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,这是目前非常流行的方法。下面的术语,将把自联想网络称作自编码网络autoencoder.。通过层叠自编码网络的深度网络在深度学习里另外一个属于叫栈式自编码网络。

    经典的DBN网络结构 是由若干层 RBM 和一层 BP 组成的一种深层神经网络, 结构如下图所示:

                                                           

    DBN 在训练模型的过程中主要分为两步:

    第 1 步:分别单独无监督地训练每一层 RBM 网络,确保特征向量映射到不同特征空间时,都尽可能多地保留特征信息

    第 2 步:在 DBN 的最后一层设置 BP 网络,接收 RBM 的输出特征向量作为它的输入特征向量,有监督地训练实体关系分类器.而且每一层 RBM 网络只能确保自身层内的 权值对该层特征向量映射达到最优,并不是对整个 DBN 的特征向量映射达到最优,所以反向传播网络还将错误信息自顶向下传播至每一层 RBM,微调整个 DBN 网络.RBM 网络训练模型的过程可以看作对一个深层 BP 网络权值参数的初始化,使DBN 克服了 BP 网络因随机初始化权值参数而容易陷入局部最优和训练时间长的缺点

    上述训练模型中第一步在深度学习的术语叫做预训练,第二步叫做微调。最上面有监督学习的那一层,根据具体的应用领域可以换成任何分类器模型,而不必是BP网络。

    展开全文
  • 深度信念网络(DBN)

    万次阅读 多人点赞 2016-12-13 12:47:20
    1.初识深度信念网络 深度信念网络是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型...

    1.初识深度信念网络

      深度信念网络是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。

      DBNs由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的网络结构如图1所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。


    图1

    2.需要面对的问题

    对于在深度神经网络应用传统的BP算法的时候,DBN遇到了以下问题:

    (1)需要为训练提供一个有标签的样本集;

    (2)学习过程较慢;

    (3)不适当的参数选择会导致学习收敛于局部最优解。

    Solution:

      首先,先不考虑最顶构成一个联想记忆(associative memory)的两层,一个DBN的连接是通过自顶向下的生成权值来指导确定的,RBMs就像一个建筑块一样,相比传统和深度分层的sigmoid信念网络,它能易于连接权值的学习。

      最开始的时候,通过一个非监督贪婪逐层方法去预训练获得生成模型的权值,非监督贪婪逐层方法被Hinton证明是有效的,并被其称为对比分歧(contrastive divergence)。


    图2

       在这个训练阶段,在可视层会产生一个向量v,通过它将值传递到隐层。反过来,可视层的输入会被随机的选择,以尝试去重构原始的输入信号。最后,这些新的可视的神经元激活单元将前向传递重构隐层激活单元,获得h(在训练过程中,首先将可视向量值映射给隐单元;然后可视单元由隐层单元重建;这些新可视单元再次映射给隐单元,这样就获取新的隐单元。执行这种反复步骤叫做吉布斯采样)。这些后退和前进的步骤就是我们熟悉的Gibbs采样,而隐层激活单元和可视层输入之间的相关性差别就作为权值更新的主要依据。

      训练时间会显著的减少,因为只需要单个步骤就可以接近最大似然学习。增加进网络的每一层都会改进训练数据的对数概率,我们可以理解为越来越接近能量的真实表达。这个有意义的拓展,和无标签数据的使用,是任何一个深度学习应用的决定性的因素。

      在最高两层,权值被连接到一起,这样更低层的输出将会提供一个参考的线索或者关联给顶层,这样顶层就会将其联系到它的记忆内容。而我们最关心的,最后想得到的就是判别性能,例如分类任务里面。

      在预训练后,DBN可以通过利用带标签数据用BP算法去对判别性能做调整。在这里,一个标签集将被附加到顶层(推广联想记忆),通过一个自下向上的,学习到的识别权值获得一个网络的分类面。这个性能会比单纯的BP算法训练的网络好。这可以很直观的解释,DBNs的BP算法只需要对权值参数空间进行一个局部的搜索,这相比前向神经网络来说,训练是要快的,而且收敛的时间也少。

    3.详细训练算法流程


    图3

      在训练时, Hinton采用了逐层无监督的方法来学习参数。如图3所示,首先把数据向量x和第一层隐藏层作为一个RBM, 训练出这个RBM的参数(连接x和h1的权重, x和h1各个节点的偏置等等), 然后固定这个RBM的参数, 把h1视作可见向量, 把h2视作隐藏向量, 训练第二个RBM, 得到其参数, 然后固定这些参数, 训练h2和h3构成的RBM, 具体的训练算法如下:

      CD的训练过程中用到了Gibbs 采样,即在训练过程中,首先将可视向量值映射给隐单元,然后用隐层单元重建可视向量,接着再将可视向量值映射给隐单元……反复执行这种步骤。

      k-Gibbs的过程如下:

      其中,P是model distribution,是training set distribution

      DBN训练算法:

      DBN运用CD算法逐层进行训练,得到每一层的参数Wi和ci用于初始化DBN,之后再用监督学习算法对参数进行微调。

    4.经典网络结构

      经典的DBN网络结构是由若干层 RBM 和一层 BP 组成的一种深层神经网络, 结构如下图4所示.


    图4

      DBN 在训练模型的过程中主要分为两步:

      第 1 步:分别单独无监督地训练每一层 RBM 网络,确保特征向量映射到不同特征空间时,都尽可能多地保留特征信息;

      第 2 步:在 DBN 的最后一层设置 BP 网络,接收 RBM 的输出特征向量作为它的输入特征向量,有监督地训练实体关系分类器.而且每一层 RBM 网络只能确保自身层内的 权值对该层特征向量映射达到最优,并不是对整个 DBN 的特征向量映射达到最优,所以反向传播网络还将错误信息自顶向下传播至每一层 RBM,微调整个 DBN 网络.RBM 网络训练模型的过程可以看作对一个深层 BP 网络权值参数的初始化,使DBN 克服了 BP 网络因随机初始化权值参数而容易陷入局部最优和训练时间长的缺点.

      上述训练模型中第一步在深度学习的术语叫做预训练,第二步叫做微调。最上面有监督学习的那一层,根据具体的应用领域可以换成任何分类器模型,而不必是BP网络。

    5.拓展

      DBN的灵活性使得它的拓展比较容易。一个拓展就是卷积DBNs(Convolutional Deep Belief Networks(CDBN))。DBN并没有考虑到图像的2维结构信息,因为输入是简单的从一个图像矩阵一维向量化的。而CDBN就是考虑到了这个问题,它利用邻域像素的空域关系,通过一个称为卷积RBM的模型区达到生成模型的变换不变性,而且可以容易得变换到高维图像。DBN并没有明确地处理对观察变量的时间联系的学习上,虽然目前已经有这方面的研究,例如堆叠时间RBMs,以此为推广,有序列学习的dubbed temporal convolutionmachines,这种序列学习的应用,给语音信号处理问题带来了一个让人激动的未来研究方向。

      目前,和DBN有关的研究包括堆叠自动编码器,它是通过用堆叠自动编码器来替换传统DBN里面的RBM。这就使得可以通过同样的规则来训练产生深度多层神经网络架构,但它缺少层的参数化的严格要求。与DBN不同,自动编码器使用判别模型,这样这个结构就很难采样输入采样空间,这就使得网络更难捕捉它的内部表达。但是,降噪自动编码器却能很好的避免这个问题,并且比传统的DBN更优。它通过在训练过程添加随机的污染并堆叠产生场泛化性能。训练单一的降噪自动编码器的过程和RBM训练生成模型的过程一样。

    展开全文
  • DBN深度信念网络详解

    千次阅读 2018-12-21 14:03:17
    1. 自联想神经网络深度网络  自联想神经网络是很古老的神经网络模型,简单的说,它就是三层BP网络,只不过它的输出等于输入。很多时候我们并不要求输出精确的等于输入,而是允许一定的误差存在。所以,我们说,...

    1.  自联想神经网络与深度网络

       自联想神经网络是很古老的神经网络模型,简单的说,它就是三层BP网络,只不过它的输出等于输入。很多时候我们并不要求输出精确的等于输入,而是允许一定的误差存在。所以,我们说,输出是对输入的一种重构。其网络结构可以很简单的表示如下:

     如果我们在上述网络中不使用sigmoid函数,而使用线性函数,这就是PCA模型。中间网络节点个数就是PCA模型中的主分量个数。不用担心学习算法会收敛到局部最优,因为线性BP网络有唯一的极小值。

     在深度学习的术语中,上述结构被称作自编码神经网络。从历史的角度看,自编码神经网络是几十年前的事情,没有什么新奇的地方。

      既然自联想神经网络能够实现对输入数据的重构,如果这个网络结构已经训练好了,那么其中间层,就可以看过是对原始输入数据的某种特征表示。如果我们把它的第三层去掉,这样就是一个两层的网络。如果,我们把这个学习到特征再用同样的方法创建一个自联想的三层BP网络,如上图所示。换言之,第二次创建的三层自联想网络的输入是上一个网络的中间层的输出。用同样的训练算法,对第二个自联想网络进行学习。那么,第二个自联想网络的中间层是对其输入的某种特征表示。如果我们按照这种方法,依次创建很多这样的由自联想网络组成的网络结构,这就是深度神经网络,如下图所示:

    注意,上图中组成深度网络的最后一层是级联了一个softmax分类器。

     深度神经网络在每一层是对最原始输入数据在不同概念的粒度表示,也就是不同级别的特征描述。    这种层叠多个自联想网络的方法,最早被Hinton想到了。从上面的描述中,可以看出,深度网络是分层训练的,包括最后一层的分类器也是单独训练的,最后一层分类器可以换成任何一种分类器,例如SVM,HMM等。上面的每一层单独训练使用的都是BP算法。 相信这一思路,Hinton早就实验过了。

    2. DBN神经网络模型

     使用BP算法单独训练每一层的时候,我们发现,必须丢掉网络的第三层,才能级联自联想神经网络。然而,有一种更好的神经网络模型,这就是受限玻尔兹曼机。使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,,这是目前非常流行的方法。下面的术语,将把自联想网络称作自编码网络autoencoder.。通过层叠自编码网络的深度网络在深度学习里另外一个属于叫栈式自编码网络。经典的DBN网络结构 是由若干层 RBM 和一层 BP 组成的一种深层神经网络, 结构如下图所示.

       DBN 在训练模型的过程中主要分为两步:

      第 1 步:分别单独无监督地训练每一层 RBM 网络,确保特征向量映射到不同特征空间时,都尽可能多地保留特征信息;(学习特征)

      第 2 步:在 DBN 的最后一层设置 BP 网络,接收 RBM 的输出特征向量作为它的输入特征向量,有监督地训练实体关系分类器.而且每一层 RBM 网络只能确保自身层内的 权值对该层特征向量映射达到最优,并不是对整个 DBN 的特征向量映射达到最优,所以反向传播网络还将错误信息自顶向下传播至每一层 RBM,微调整个 DBN 网络.RBM 网络训练模型的过程可以看作对一个深层 BP 网络权值参数的初始化,使DBN 克服了 BP 网络因随机初始化权值参数而容易陷入局部最优和训练时间长的缺点。

    上述训练模型中第一步在深度学习的术语叫做预训练,第二步叫做微调。最上面有监督学习的那一层,根据具体的应用领域可以换成任何分类器模型,而不必是BP网络。

    3. 深度信念网络的应用  

    由于自编码网络可以对原始数据在不同概念的粒度上进行抽象,深度网络一种自然的应用是对数据进行压缩或者叫降维。胡邵华等,他们用一种自编码网络实现了对经典的"瑞士卷"数据的重构:

       " 瑞士卷"数据是经典的机器学习中难于分类的数据之一,其隐含的数据内在模式难以在二维数据中描述。然而, 胡邵华等,采用深度信念网络实现了对三维瑞士卷数据的2维表示,其自编码网络节点大小依次为3-100-50-25-10-2. 具体的实现细节请参考文献:胡邵华、宋耀良:基于autoencoder网络的数据降维与重构。
     

    深度神经网络的另一个常见的应用是特征提取。

         文献:Philippe Hamel and Douglas Eck, LEARNING FEATURES FROM MUSIC AUDIO WITH DEEP BELIEF NETWORKS.

     通过训练一个5层的深度网络提取音乐的特征,用于音乐风格的分类,其分类精度比基于梅尔倒谱系数特征分类的方法提到了14个百分点。

     他们的实现思路非常简单,用上述层叠的多个RBM网络组成深度网络结构来提取音乐的特征。输入的原始数据是经过分帧,加窗之后的信号的频谱。分类器采用的是支撑矢量机SVM。对比的方法则是提取MFCC特征系数,分类器同样采用SVM。更多的细节和实验结果可以参考上面提到的文献。

    深度网络是一种良好的无监督学习方法,其特征提取功能能够针对不同概念的粒度大小,能够在很多领域得到广泛的应用。通常,DBN主要用于对一维数据的建模比较有效,例如语音。而通过级联多层卷积网络组成深度网络的模型主要用于二维数据,例如图像等。

         通过下面的图以及上面的内容,可以更加深入的理解DBN:深度信念网络算法。

      

    参考文献:
    [1]Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, vol. 313, pp. 504-507, 2006.
    [2]Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural computation, vol. 18, pp. 1527-1554, 2006.
    [3]Xie, Jipeng, et al. "Learning features from High Speed Train vibration signals with Deep Belief Networks." Neural Networks (IJCNN), 2014 International Joint Conference on. IEEE, 2014.
    [4]Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks. Advances in neural information processing systems, vol. 19, pp. 153-160, 2007.
    [5]Salakhutdinov R. Learning deep generative models. Diss. University of Toronto, 2009.
    [6]Hinton G. A practical guide to training restricted Boltzmann machines. Neural Networks: Tricks of the Trade, pp. 599-619, 2012.
    [7]Bengio Y. Learning deep architectures for AI. Foundations and trends® in Machine Learning, vol. 2, pp. 1-127, 2009.

    [8]http://blog.csdn.net/celerychen2009/article/details/9079715

    转自:https://blog.csdn.net/qq_27245709/article/details/73278010

    展开全文
  • 深度信念网络(Deep Belief Network)

    万次阅读 多人点赞 2016-03-28 21:17:29
    “深度学习”学习笔记之深度信念网络    本篇非常简要地介绍了深度信念网络的基本概念。文章先简要介绍了深度信念网络(包括其应用实例)。接着分别讲述了:(1) 其基本组成结构——受限玻尔兹曼机的的基本...
  • 本篇非常简要地介绍了深度信念网络的基本概念。文章先简要介绍了深度信念网络(包括其应用实例)。接着分别讲述了:(1) 其基本组成结构——受限玻尔兹曼机的的基本情况,以及,(2) 这个基本结构如何组成深度信念网络...
  • 浅谈深度信念网络(Deep Belief Network) 一、受限玻尔兹曼机(Restricted Boltzmann Machines ) RBM简介 如图所示,一个受限玻尔兹曼机由两层网络组成,分别为可见层(Visible layer)和隐藏层(Hidden layer)...
  • 快速理解深度信念网络

    千次阅读 2018-10-10 11:02:59
    深度信念网络 (Deep Belief Network, DBN) 由 Geoffrey Hinton 在 2006 年提出。它是一种生成模型,通过训练其神经元间的权重,我们可以让整个神经网络按照最大概率来生成训练数据。我们不仅可以使用 DBN 识别特征、...
  • 深度信念网络是深度学习爆发前夕重要的研究成果,以Hinton 2006年的两篇论文为代表。A fast learning algorithm for deep belief netsReducing the dimensionality of data with neural networks其中,第二篇发表在...
  • 深度信念神经网络DBN最通俗易懂的教程

    万次阅读 多人点赞 2017-08-06 22:30:40
    深度信念网络,它的英文名叫作Deep Belief Network,先解释一下这个名词: Deep意思是深度,大家应该有听过深度学习吧,深度学习是一个叫做Hinton的大学霸发明的,这个大学霸,大神很牛,他的官网是:...
  • 深度信念网络在处理维数比较多的数据时,可以起到压缩数据维度的作用。其经典结构为: ![在这里插入图片描述](https://img-blog.csdnimg.cn/20181110120423330.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5...
  • 深度信念网络DBN的一个matlab实例

    万次阅读 多人点赞 2016-07-20 14:57:46
    深度网络 指是具有深层(多层)网络结构的神经网络。  深层网络由于神经元多,参数多,拟合表现能力强,有表现欲解决复杂问题的能力。  但是深度网络存在很多局部最优解,深度网络的训练容易停留在局部最优上,...
  • 深度信念网络结构,经典结构,直接上图: DBN由多个RBM堆叠而成,训练过程由预训练和微调构成 深度信念网络训练步骤: (1)预训练:分别单独无监督的训练每一层RBM网络,确保特征向量映射到不同特征空间是,都...
  • 机器学习——DBN深度信念网络详解

    万次阅读 2016-08-12 09:15:54
    使用BP算法单独训练每一层的时候,我们发现,必须丢掉网络的第三层,才能级联自联想神经网络。...使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,这是目前非常流行的方法。
  • 在Reducing the Dimensionality of Data with Neural Networks中,作者给出关于MNIST的MATLAB程序的输入层是二进制向量的集合,那么当我想用连续数值输入时,应该以什么形式进行输入?需要对数据进行一些预处理吗?
  • 该系列的其他文章: 常见的五种神经网络(1)-前馈神经网络 ...常见的五种神经网络(4)-深度信念网络(上篇) 常见的五种神经网络(4)-深度信念网络(下篇) 常见的五种神经网络(5)-生成对抗网络 在上一篇文章中介...
  • DeepLearnToolbox 源码 下载地址 https://github.com/rasmusbergpalm/DeepLearnToolbox 解压后可得到
  • 按底层网络的不同,DBN可以分为MLP(多层感知器)信念网络和RBM(受限玻尔兹曼机)信念网络。 由于本人学识有限,就先暂时只说一下RBM信念网络。所谓RBM信念网络就是底层网络采用RBM,当然底层网络的层数是自己可选...
  • 基于深度学习的人脸表情识别(一)

    万次阅读 2016-03-08 20:28:05
    第一篇博客就不用Markdown(什么鬼)来写了。 今天主要是被老板一通说,然后说两月看10篇paper,算了,还是丫丫...主要是找了 浙理工的施徐敢的毕设论文和他的一篇《融合深度信念网络和多层感知器的人脸表情识别》,
  • 基于深度学习的图像识别算法研究

    万次阅读 2016-10-24 12:34:24
    利用卷积限制性玻尔兹曼机–>构建深度网络、改进训练过程摘要 本文研究的主要工作包括: (1)认真分析了图像识别的方法及存在的问题,对现有的图像识别算法进行了对比研究,详细叙述了深度学习的发展和进展,对比...
1 2 3 4 5 ... 20
收藏数 6,485
精华内容 2,594
关键字:

深度信念网络