2019-03-13 16:31:16 weiqiwu1986 阅读数 4174

噪声问题一直是语音识别的一个老大难的问题,在理想的实验室的环境下,识别效果已经非常好了,之前听很多音频算法工程师抱怨,在给识别做降噪时,经常发现WER不降反升,降低了识别率,有点莫名其妙,又无处下手。

  刚好,前段时间调到了AIlab部门,有机会接触这块,改善语音识别的噪声问题,虽然在此之前,询问过同行业的朋友,单通道近场下,基本没有太大作用,有时反而起到反作用,但是自己还是想亲身实践一下,至少找到这些方法失效的原因,看看是否在这些失败的原因里面,改进下思路,可能有新的发现;同时去Ailab,顺带把深度学习降噪实践一把,就算在ASR没有效果,以后还能用在语音通信这个领域。

  任务的要求是保证声学模型不变动的情况下,即不重新训练声学模型,即单纯利用降噪来改善那些环境恶劣的样本,同时保证不干扰纯净语音或者弱噪声的语音场景,所以非常具有挑战性。

  为了赶项目,用自己非常熟悉的各种传统的降噪方法:包括最小值跟踪噪声估计,MCRA, IMCRA,等各种噪声估计方法,以及开源项目 webrtc NS, AFE(ETSI ES 202 050 Advanced DSR Front-end Codec, two stages of Wiener filtering),剩下的任务就是调参,经过很多次努力,基本没有什么效果,相反WER还会有1%点左右的增加。

分析对比了降噪和没有降噪的识别文本对比和频谱分析,总结了以下这些原因,希望对后面的人有些参考意义:

  1.DNN本身就有很强的抗噪性,在弱噪声和纯净语音下,基本都不是问题。

通常场景下,这点噪声,用线上数据或者刻意加噪训练,是完全可以吸收掉的,只有在20db以下,含噪样本的频谱特征和纯净样本的频谱特征差异太大,用模型学习收敛就不太好,这时需要降噪前端。

  2.降噪对于纯净语音或者弱噪声环境下,不可避免的对语音有所损伤,只有在恶劣的环境下,会起到非常明显的作用。

传统降噪是基于统计意义上面的一个处理,难以做到瞬时噪声的精准估计,这个本身就是一个近似的,粗略模糊化的一个处理,即不可避免的对噪声欠估计或者过估计,本身难把握,保真语音,只去噪,如果噪声水平很弱,这个降噪也没有什么用或者说没有明显作用,去噪力度大了,又会破坏语音。可以预见,根据测试集进行调参,就像是在绳子上面玩杂技。

我们的测试样本集,90%的样本都在在20db以上,只有200来条的样子,环境比较恶劣。所以通常起来反作用。

  3.降噪里面的很多平滑处理,是有利于改善听感的,但是频谱也变得模糊,这些特征是否能落到正确的类别空间里面,也是存在疑问的。所以在前端降噪的基础上,再过一遍声学模型重新训练,应该是有所作用的,但是训练一个声学模型都要10来天,损失太大,也不满足任务要求。

  4. 传统降噪,通常噪声初始化会利用初始的前几帧,而如果开头是语音,那就会失真很明显。

  5.估计出噪声水平,在SNR低的情况下降噪,SNR高时,不处理或者进行弱处理,在中间水平,进行软处理,这个思路似乎可以行的通。

  6.用基于声学特征的传统降噪方法,尝试过,在测试集里面,有不到1%的WER降低。

  7.到底用什么量来指导降噪过程?既然降噪没法做好很好的跟踪,处理的很理想。即不可能处理的很干净,同时不能保证语音分量不会被损伤,即降噪和保证语音分量是个相互矛盾,同时也是一个权衡问题。那其实换个角度,降噪主要是改善了声学特征,让原来受噪声影响错分类的音素落到正确的音素类别,即降低CE。那么应该直接将降噪和CE做个关联,用CE指导降噪过程参数的自适应变化,在一个有代表性的数据集里面,有统计意义上的效果,可能不一定能改善听感,处理的很干净,但是在整体意义上,有能改善识别的。所以说语音去噪模块必须要和声学前端联合起来优化,目标是将去噪后的数据投影到声学模块接受的数据空间,而不是改善听感,即优化的目标是降低声学模型的CE,或者说是降低整条链路的wer,所以用降噪网络的LOSS除了本身的损失量,还应绑定CE的LOSS自适应去训练学习是比较合理的方案。也可以将降噪网络看成和声学模型是一个大网络,为CE服务,当然,这不一定是降噪网络,也可以是传统的自适应降噪方法,但是如果是基于kaldi开发,里面涉及到的工程量是很大的。

  8.在整个语音识别体系中,由于声学模型的强抗噪性,所以单通道下的前端降噪似乎没有什么意义,1%左右的wer的改变,基本不影响整个大局,所以想要搞识别这块的朋友,应该先把重要的声学模型,语言模型,解码器,搞完之后,再来撸撸这块,因为即便没有单独的前端,整个识别大多数场景都是OK的,恶劣的场景比较少,一般场景大不了扩增各种带噪数据训练,大不了扩增各种带噪数据,也是可以的。

我们的线上数据,影响识别的因素排序是口语化,方言,短词,其次才是噪声,另外,少量混响,语速,音量,也是影响因素之一,以上是自己的一点片面之言,希望对大家有参考意义,少走弯路。

 

2019-05-16 14:37:08 qq_43019717 阅读数 1618

大家好,上期小君给大家分享了语速对语音引擎识别的影响,相信大家对语速对识别的影响有了初步的认识。经过一个多月的调研,小君本期给各位带来了一次新的评测,即科大讯飞,百度,思必驰,云知声四家语音引擎在降噪性能上的差异。
本次评测主要是对比每家语音识别引擎降噪性能,采取将语音文件直接送接口的方式进行测试,接口同样是基于各家公司给广大语音开发爱好者提供的开源开发接口。
测试语音信息详情如下:
• 音频编码格式:wav
• 音频采样率:16000Hz
• 文本字数:每条平均8字左右,共计1586字。
• 音频分类:安静环境下音频、SNR=15环境下音频、SNR=5环境下音频(SNR为信噪比)
• 音频领域:手机基本操作,领域涉及有常用应用,导航,音乐,天气,设置,日期6个领域,共计200条
• 音频信息:北方自然语速,男女比例1:1,共计20人
• 噪音合成:采取噪音合成的方式对纯净音频进行加噪
• 噪音:中文歌曲

展示一下文本样例:

  1. 导航领域:请帮我绕开从王府井到西单的拥堵地段
  2. 设置领域:设置每周一早上7点的闹钟
  3. 手机基本操作领域:发短信给小明

由于本次测试采取的是直接将数据送入识别接口的方式进行,没有类似于终端产品对整个环境的收音模块,所以噪音不能直接以播放的方式进行增加,但咱们还得测试不同信噪比下的数据呢,难不倒小君的,小君有噪音合成工具!可以将选定的噪音数据与语音数据进行,且SNR可设定,问题解决,而且还能更好的保证噪音数据一致性!
语音识别引擎在噪音消除方面的性能好坏会基于产品的定位,对不同的噪音也会有不同的处理方式,本次小君选取噪音集为常用噪音集,中文歌曲;由于本次测试专注于降噪算法的对比,为了减少变量、保证数据一致性,选取的语音数据为消音室录制的语料。

测试数据的信息大家了解的差不多了,那让我们来看一下对比结果,来分析各引擎的优缺点吧。
首先我们通过识别引擎在不同噪音环境下进行识别率的对比,通过下图数据可以看出科大讯飞和思必驰在三种环境下识别率差异不大,识别率从安静环境到SNR=5环境下降了1%左右,表现较好。百度在安静条件的语音识别率达到了97.51%,SNR=15时识别率为96.35%,SNR=5时降到了81.26%,可以看出随着噪音声压级的增大,百度识别引擎的降噪算法性能出现了大幅度的下降;云之声则时安静条件到SNR=15时下降幅度较大,从94.41%下降到了89.78%。SNR=15到SNR=5时的识别率下降幅度较小。

然后再对四款语音识别引擎间进行识别率的对比,可以看出安静条件下,云之声较其他三款产品的识别率最低,识别率为94.41%;SNR=15时,科大讯飞和思必驰表现较好,云之声相对较差,识别率为89.78%;随着背景噪音声压级的增大,在SNR=5时,百度识别率下降幅度较大,下降到81.26%,云之声同样较差,识别率为87.33%。测试详细数据如下:
在这里插入图片描述
在这里插入图片描述
(备注:以上测评结果仅基于本次验证集)

综合以上两方面的对比,基于本次测试数据的测试结果可以看出,科大讯飞和思必驰在降噪处理方面综合表现较好,百度和云之声在该方面则表现较差。
另外小君在本次测试过程中发现一个有趣的现象,思必驰识别引擎在安静条件下要比SNR=15时的识别率要低0.19%。为了搞清楚这0.19%的差距在哪,小君将两组测试结果分别对比,发现差异并不大,仅有6条语音的识别结果存在差异,主要体现在安静条件下的替换错误增加,而SNR=15条件下插入错误增加,下面列举一下部分识别结果供大家参考。
在这里插入图片描述

本次小君仅从中文音乐噪音的消除性能方面对四款公开的识别引擎进行了对比,不作为评价四款识别引擎降噪性能好坏的评价标准。因为仅仅是音乐噪音又区分了不同的语言、高中低频等,如果您想了解识别引擎的整体降噪性能,需要多个维度进行测评,对语音识别引擎降噪算法的测试感兴趣的话,可以随时联系小君,小君表示热烈欢迎。

2019-05-21 10:32:30 weixin_43476455 阅读数 312

AID.Speech是以Tengine-Lite为平台的嵌入式前端语音唤醒/打断算法,它可以在Arm Cortex-M4上流畅运行,适用于各种语音交互的IoT场景;包含,行业领先的语音识别算法;优秀的单麦本地语音解决方案 ,具体有语音降噪算法,语音活性检测算法,声学回声消除算法等。

 

Tengine-Lite 简介

Tengine-Lite是专为MCU场景设计的超轻量级AI推理框架,提供有史以来最佳的MCU AI应用开发体验。

Tengine-Lite向上兼容Arm中国周易Tengine应用接口,支持Caffe/MXNet/TensorFlow模型,采用程序与模型分离的开发流程,支持常见RTOS操作系统和Bare-metal运行环境,支持Keil/IAR等主流开发环境,大幅度提高MCU AI应用开发效率。

同时为了满足超低成本的部署需求,Tengine-Lite采用纯C语言开发,最小程序体积20K。此外Tengine-Lite针对Arm Cortex-M CPU提供HCL-M计算库,支持FP32/INT8计算精度,兼容CMSIS-NN,同时支持调用DSP和AI硬件加速器进行异构计算,赋能MCU+AI加速器芯片。

 

同时AID.Speech提供友好、简洁、通用的API,可以快速部署到目标硬件平台,加速语音识别终端快速产品化落地;默认支持FreeRTOS/Zephyr操作系统,经过简单修改就适配其他操作系统;提供唤醒词的定制以及在特定产品上的效果调优服务。

语音识别算法流程

语音识别需要经过声学回声消除、语音降噪、自动增益控制、声学特征提取、语音识别等多个步骤,通过使用Tengine-Lite/HCL-M大大提升了现有嵌入式SoC的算力,使得语音识别系统可部署在各类种嵌入式设备上,并提供超预期的识别用户体验。

AID.Speech产品特性

使用Tengine Lite,极快的识别速度;

针对于不同CPU指令集、微架构级别优化,以及DSP/NPU的异构计算支持;

3 识别本地化,支持完全离线工作模式;

4 基于深度学习算法,超小模型,对内存容量要求低;

抗噪声能力强;

支持FreeRTOS/Zephyr等多种RTOS系统;

AID.Speech产品性能

AID.Speech采用多种语音前处理算法,在极大地抑制噪声的同时,适当地增强语音信号;采用回声消除算法,从输入语音中消除设备自身播放的影响,赋予设备全双工的能力。语音识别模型大小可以根据需要在50~350KB内自由选择,在保证误唤醒率<3次/天的条件下,识别率高达95%。

Cortex-M4上的性能数据

典型应用场景

AID.Speech不同环境下唤醒打断及命令词demo

视频地址:https://v.qq.com/x/page/e0872xztwzt.html

 

OPEN AI LAB 于2016年12月成立,由Arm中国联合产业伙伴发起,致力于推动芯片、算力、算法、应用和数据等产业链各层次的深度协作,加速人工智能产业化应用部署和应用场景边界拓展,为最终实现万物智能贡献力量。更多:http://www.openailab.com/?csdn0521

2019-08-27 18:49:44 xiaoyzo 阅读数 262

转自:https://blog.csdn.net/haima1998/article/details/72966012

远场语音识别技术难点可以分为3个部分,第一个是多通道同步采集硬件研发,第二个是前端麦克风阵列降噪算法,第三个是后端语音识别与前端信号处理算法的匹配。

首先多通道同步采集硬件是研究前端降噪算法的前提,只有先拿到一些麦克风阵列的数据,才能根据实际采集的数据进行算法的研发和调优。目前市面上主流的codec芯片最多支持4通道同步采集,这对于麦克风阵列来说是不够的,比如echo音箱,采用了7个麦克风,再加上一个喇叭的参考信号,所以它至少需要8通道同步采集,即2个4通道的codec芯片。为了使两个codec芯片同步,需要一颗FPGA芯片来协助完成,同时麦克风还需要一些配套的模拟滤波放大电路,中间有很多都是经验性的东西,并且在echo以前,消费电子上很少有集成4个麦克风的情况,所以研究的人很少,这也增加了该硬件的研发难度。当然如果仅仅是为了研究可以直接购买一些多通道同步采集设备,节省硬件研发周期。

其次是麦克风阵列降噪算法的研发。目前影响远场语音识别的难点是播放状态下打断,房间混响和非平稳噪声干扰等。播放状态下打断是指设备在播放音乐或TTS的时候可以对它再次下达指令,这就需要回声消除技术,将设备自身播放的声音从麦克风接收到的信号除去,这个技术在手机上已经非常成熟了,比如speex和webrtc的开源软件中都有该算法,但这两个开源软件为了达到更大的回声抑制效果,使用了大量的非线性处理手段,因此如果直接用在远场语音识别领域,效果并不好(我们已经做过测试)。在研究中我也发现,语音识别引擎对于语音信号的非线性处理非常敏感,简单的说就是语音失真少一些即使背景噪声有残留,也不会影响语音识别率。房间混响会造成麦克风接收到的信号有很长的拖尾,让人听起来感觉发闷,在实际中人耳具有自动解混响的能力,所以人在实际房间中相互交流并没有影响反而觉得声音饱满,但是这个对于语音识别来说是致命的,我觉得可能的原因是房间的冲击响应太长,一般有400ms-1000ms,而语音识别一帧的长度只有50ms,即使DNN有记忆能力,但也有限,所以在混响中语音识别率下降。远场语音识别以前,由于需求不大,对于去混响研究的不多,一般以倒谱平均、谱减法为主,但这类方法对远场语音识别率提升不大,目前比较好的去混响算法是日本NTT部门研究的多步线性预测方法,有兴趣的可以尝试一下。非平稳噪声干扰主要是利用波束形成去除,在做波束形成之前需要先知道说话人的方向,这就需要测向功能,即波达方向估计,学术上的论文一般研究如何提高测向的精度和分辨率,但这些指标在实际中意义不大,实际中更需要解决的是如何在混响的条件下提高波达方向估计的鲁棒性。知道方向之后,就可以做波束形成,抑制周围的非平稳噪声,由于消费产品价格和尺寸的限制,麦克风的个数间距有限,因此必须用自适应波束形成算法,简单说就是保护主方向说话人的同时,自动在噪声方向形成零点,对噪声进行抑制。经过测试,波束形成算法可以大幅提高语音识别率。

最后就是语音识别引擎要和前端降噪算法进行匹配。目前的识别算法还是训练数据和测试数据越匹配效果越好。目前各家的语音识别引擎主要是利用手机上收集的语音进行训练的,因此只适用于近讲情况。同样道理,为了提升远场语音识别,就需要用远场的语音数据训练声学模型,而远场语音数据又太复杂(混响、噪声),这就需要信号处理的手段让数据尽量变的单一一些,最佳的方法就是利用麦克风阵列采集的信号经过前端降噪算法后的数据去训练语音识别引擎,效果应该会有大幅提升。

此外,目前远场语音识别也分为两派,一派认为利用深度学习的办法也可以实现去混响降噪声的目的,另外一派是用麦克风阵列信号处理的方法去除混响和噪声,从目前的产品上看麦克风阵列信号处理的方式在实际中用的更多一些,echo用了7个麦克风,叮咚用了8个麦克风,google home也用了两个麦克风。个人觉得在远场语音识别这块,麦克风阵列信号处理还是一定需要的,因为人有这么聪明的大脑还长了两个耳朵,而目前DNN和人脑差别又很大,所以更需要多个麦克风做辅助,相信随着DNN的发展应该有一天可以只用两个麦克风就可以彻底解决远场语音识别问题,但这个时间估计还会很长。

 

 

2019-10-10 17:13:15 qq_36939528 阅读数 53

《多麦克风降噪》

问题背景:音频录制时会有不可预测的噪声,而传统单通道由于混叠噪声和信号频谱内容可能使语音失真,这给语音识别带来困难。
主讲:DS(延时求和波束成形),多通道winner滤波,空-时预测滤波三种算法,并进行实验设计仿真。
一切降噪脱离噪声背景谈就是脱离实际!!!!!!!!!!!!!
噪声环境:不可控,由干扰源组成并且统计上不稳定(这样的噪声环境将导致单通道降噪使目标语音失真)
在这里插入图片描述
说话人识别理想环境:安静环境,扬声器直接对着麦克风;
说话人识别实际环境:噪声环境不可控,扬声器也不是直接对着麦克风。

窄带波束形成

本质:空间选择滤波器,通过调整阵列几何形状以及探索各种通道加权方法,形成各种空间滤波器。

DS波束形成

在这里插入图片描述
N个麦克风接收到的信号:
在这里插入图片描述
其中:在这里插入图片描述
上式描述了延迟和求和两个步骤,DS波束形成器的方向响应就是将波束输出信号Zds进行空间傅里叶变换得到,如下:
在这里插入图片描述
方向响应图如下:
在这里插入图片描述
中间最高的就叫主瓣,其余的都叫旁瓣,改变理想方向theta会改变主瓣位置,而改变权重会改变主、旁瓣的形状,这里补充一下,主瓣宽度为一个重要参数,它随着阵列间距d、麦克风数目N、信号频率f的增大而变窄,而旁瓣我们一般希望它尽可能的低。DS在宽带信号处理中效果并不好,因为它有一定频率依赖性,而语音信号恰好就是宽带信号,所以要寻求宽带信号处理,此外,不难发现它依赖一些先验条件,如theta(DOA)、麦克风相对位置,有时候并不容易获取,所以会寻求自适应处理。

没有更多推荐了,返回首页