2019-05-22 00:45:34 zhinengxuexi 阅读数 811
  • C++语音识别开篇

    本篇mark老师将教大家使用第三方库的调用来简单的实现语音识别。随着机器学习和人工智能的热闹,国内语音行业也可谓是百花齐放。 语音识别一个伟大的时代已在我们身边悄悄走来。

    5912 人正在学习 去看看 杨波

随着AI快速发展的今天,语音识别也成为众多设备的标配,语音识别开始被越来越多人的关注,国外微软、苹果、谷歌,国内的科大讯飞、思必弛、云知声等厂商都在研发语音识别新策略新算法,似乎人类与语音的自然交互渐行渐近。

语音识别是以语音的研究为对象,通过语音信号处理和模式识别让机器自动识别和理解人类口述的语言。

语音识别系统本质上是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单元。

一套完整的语音识别系统,工作过程分为7步:

1.对语音信号进行分析和处理,除去冗余信息。

2.提取影响语音识别的关键信息和表达语言含义的特征信息。

3.紧扣特征信息,用最小单元识别字词。

4.按照不同语言的各自语法,依照先后次序识别字词。

5.把前后意思当作辅助识别条件,有利于分析和识别。

6.按照语义分析,给关键信息划分段落,取出所识别出的字词并连接起来,同时根据语句意思调整句子构成。

7.结合语义,仔细分析上下文的相互联系,对当前正在处理的语句进行适当修正

语音识别、图像识别均为模式识别中的主要应用,有兴趣的可以多学习一下

人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
人工智能与语音识别技术
http://www.duozhishidai.com/article-3157-1.html
人工智能快速发展的今天,语音识别现在发展到什么阶段了?
http://www.duozhishidai.com/article-2278-1.html
语音的识别过程主要分哪几步,常用的识别方法是什么?
http://www.duozhishidai.com/article-1739-1.html


多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台

2014-11-11 22:18:55 u010384318 阅读数 6300
  • C++语音识别开篇

    本篇mark老师将教大家使用第三方库的调用来简单的实现语音识别。随着机器学习和人工智能的热闹,国内语音行业也可谓是百花齐放。 语音识别一个伟大的时代已在我们身边悄悄走来。

    5912 人正在学习 去看看 杨波

之前我自己一直想把语音识别原理解释清楚,大家翻我的博客其实还是有不少的,但越来越觉得自己解释的不好,希望组织更多的人一起来完成这个事情。

目前的计划就是写一个文档描述gmm-hmm和dnn-hmm所有的过程,希望可以做到。这个是终极目标。

现在真心希望对原理很理解的人加入进来,共同完成这个事情。这个成果将以我们集体的名字发布在网上,免费提供给大家查看。

如果大家还有不清楚的,先加入kaldi群,群号:367623211。然后找到我,跟我说声。希望大家积极起来,真心想做好这件事情。谢谢……

 

大家可以看下这里的描述:

1.http://www.zhihu.com/question/20398418

2.http://www.cnblogs.com/tornadomeet/archive/2013/08/23/3276753.html

3.http://blog.csdn.net/zouxy09/article/details/7941585

4.简明GMM-HMM语音识别模型


2014.12.4更新:由于这么长时间没人配合完成此件事情,只能自己去完成了,不过这些是改成收费的了。希望大家理解,具体介绍见:http://blog.csdn.net/wbgxx333/article/details/41728455

2014-04-24 14:29:12 u010944555 阅读数 6058
  • C++语音识别开篇

    本篇mark老师将教大家使用第三方库的调用来简单的实现语音识别。随着机器学习和人工智能的热闹,国内语音行业也可谓是百花齐放。 语音识别一个伟大的时代已在我们身边悄悄走来。

    5912 人正在学习 去看看 杨波

本文转自知乎:语音识别的技术原理是什么?张俊博的回答

简要给大家介绍一下语音怎么变文字的吧。


首先说一下作为输入的时域波形。我们知道声音实际上是一种波。常见的mp3、wmv等格式都是压缩格式,必须转成非压缩的纯波形文件,比如Windows PCM文件,即wav文件来处理。wav文件里存储的除了一个文件头以外,就是声音波形的一个个点了。采样率越大,每毫秒语音中包含的点的个数就越多。另外声音有单通道双通道之分,还有四通道的等等。对语音识别任务来说,单通道就足够了,多了浪费,因此一般要把声音转成单通道的来处理。下图是一个波形的示例。


另外,通常还需要做个VAD处理,也就是把首尾端的静音切除,降低对后续步骤造成的干扰,这需要用到信号处理的一些技术。

时域的波形必须要分帧,也就是把波形切开成一小段一小段,每小段称为一帧。分帧操作通常使用移动窗函数来实现,分帧之前还要做一些预加重等操作,这里不详述。帧与帧之间是有交叠的,就像下图这样:
图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。

分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须将波形作变换。常见的一种变换方法是提取MFCC特征,把每一帧波形变成一个12维向量。这12个点是根据人耳的生理特性提取的,可以理解为这12个点包含了这帧语音的内容信息。这个过程叫做声学特征提取。实际应用中,这一步有很多细节,比如差分、均值方差规整、高斯化、降维去冗余等,声学特征也不止有MFCC这一种,具体就不详述了。

至此,声音就成了一个12行(假设声学特征是12维)、N列的一个矩阵,称之为观察序列,这里N为总帧数。观察序列如下图所示,图中,每一帧都用一个12维的向量表示,色块的颜色深浅表示向量值的大小。

接下来就要介绍怎样把这个矩阵变成文本了。首先要介绍三个概念:
  1. 单词:英语中就是单词,汉语中是汉字。
  2. 音素:单词的发音由音素构成。对英语,一种常用的音素集是卡内基梅隆大学的一套由39个音素构成的音素集,参见The CMU Pronouncing Dictionary‎。汉语一般直接用全部声母和韵母作为音素集,另外汉语识别还分有调无调,不详述。
  3. 状态:比音素更细致的语音单位。通常一个音素由3个状态构成。

语音识别是怎么工作的呢?实际上一点都不神秘,无非是:
第一步,把帧识别成状态(难点)。
第二步,把状态组合成音素。
第三步,把音素组合成单词。
如下图所示:
图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。

那每帧音素对应哪个状态呢?有个容易想到的办法,看某帧对应哪个状态的概率最大,那这帧就属于哪个状态,这叫做“最大似然”。比如下面的示意图,这帧对应S3状态的概率最大,因此就让这帧属于S3状态。


那这些用到的概率从哪里读取呢?有个叫“声学模型”的东西,里面存了一大堆参数,通过这些参数,就可以知道帧和状态对应的概率。声学模型是使用巨大数量的语音数据训练出来的,训练的方法比较繁琐,这里不讲。

但这样做有一个问题:每一帧都会得到一个状态号,最后整个语音就会得到一堆乱七八糟的状态号,相邻两帧间的状态号基本都不相同。假设语音有1000帧,每帧对应1个状态,每3个状态组合成一个音素,那么大概会组合成300个音素,但这段语音其实根本没有这么多音素。如果真这么做,得到的状态号可能根本无法组合成音素。实际上,相邻帧的状态应该大多数都是相同的才合理,因为每帧很短。

解决这个问题的常用方法就是使用隐马尔可夫模型(Hidden Markov Model,HMM)。这东西听起来好像很高深的样子,实际上很简单,无非是:
第一步,构建一个状态网络。
第二步,从状态网络中寻找与声音最匹配的路径。

这样就把结果限制在预先设定的网络中,避免了刚才说到的问题,当然也带来一个局限,比如你设定的网络里只包含了“今天晴天”和“今天下雨”两个句子的状态路径,那么不管说些什么,识别出的结果必然是这两个句子中的一句。

具体是这样的,首先构造单词级网络,然后展开成音素网络,然后展开成状态网络。然后在状态网络中搜索一条最佳路径,这条路径和语音之间的概率(称之为累积概率)最大。搜索的算法是一种动态规划剪枝的算法,称之为Viterbi算法,用于寻找全局最优路径。感兴趣的同学可以到Wikipedia上搜一下。

这里所说的累积概率,由三部分构成,分别是:
  1. 观察概率:每帧和每个状态对应的概率
  2. 转移概率:每个状态转移到自身或转移到下个状态的概率
  3. 语言概率:根据语言统计规律得到的概率
其中,前两种概率从声学模型中获取,最后一种概率从语言模型中获取。语言模型是使用大量的文本训练出来的,存储的是任意单词、任意两个单词、任意三个单词(通常也就到三个单词)在大量文本中的出现机率。

这样基本上语音识别过程就完成了。

以上介绍的是传统的基于HMM的语音识别。以上的文字不追求严谨,只是想让大家容易理解。

如果感兴趣,想进一步了解,HTK Book是非常好的入门书,这本书实际上是剑桥大学发布的著名开源工具包HTK Speech Recognition Toolkit 的说明书,近400页,厚厚的一本。如果有时间、有兴趣,可以照着书中的第二章在电脑上做一遍,你将搭建出一个简单但基本完整的语音识别系统,能识别简单的英语数字串。
2019-07-10 14:33:49 belalds 阅读数 304
  • C++语音识别开篇

    本篇mark老师将教大家使用第三方库的调用来简单的实现语音识别。随着机器学习和人工智能的热闹,国内语音行业也可谓是百花齐放。 语音识别一个伟大的时代已在我们身边悄悄走来。

    5912 人正在学习 去看看 杨波

简要给大家介绍一下语音怎么变文字的吧。希望这个介绍能让所有同学看懂。

 

首先,我们知道声音实际上是一种波。常见的mp3、wmv等格式都是压缩格式,必须转成非压缩的纯波形文件来处理,比如Windows PCM文件,也就是俗称的wav文件。wav文件里存储的除了一个文件头以外,就是声音波形的一个个点了。下图是一个波形的示例。

 

在开始语音识别之前,有时需要把首尾端的静音切除,降低对后续步骤造成的干扰。这个静音切除的操作一般称为VAD,需要用到信号处理的一些技术。要对声音进行分析,需要对声音分帧,也就是把声音切开成一小段一小段,每小段称为一帧。分帧操作一般不是简单的切开,而是使用移动窗函数来实现,这里不详述。帧与帧之间一般是有交叠的,就像下图这样:

图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。

 

分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须将波形作变换。常见的一种变换方法是提取MFCC特征,根据人耳的生理特性,把每一帧波形变成一个多维向量,可以简单地理解为这个向量包含了这帧语音的内容信息。这个过程叫做声学特征提取。实际应用中,这一步有很多细节,声学特征也不止有MFCC这一种,具体这里不讲。

 

至此,声音就成了一个12行(假设声学特征是12维)、N列的一个矩阵,称之为观察序列,这里N为总帧数。观察序列如下图所示,图中,每一帧都用一个12维的向量表示,色块的颜色深浅表示向量值的大小。

接下来就要介绍怎样把这个矩阵变成文本了。首先要介绍两个概念:

  1. 音素:单词的发音由音素构成。对英语,一种常用的音素集是卡内基梅隆大学的一套由39个音素构成的音素集,参见The CMU Pronouncing Dictionary。汉语一般直接用全部声母和韵母作为音素集,另外汉语识别还分有调无调,不详述。

  2. 状态:这里理解成比音素更细致的语音单位就行啦。通常把一个音素划分成3个状态。

 

语音识别是怎么工作的呢?实际上一点都不神秘,无非是:

第一步,把帧识别成状态(难点);

第二步,把状态组合成音素;

第三步,把音素组合成单词。

 

如下图所示:

图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。

 

那每帧音素对应哪个状态呢?有个容易想到的办法,看某帧对应哪个状态的概率最大,那这帧就属于哪个状态。比如下面的示意图,这帧对应S3状态的概率最大,因此就让这帧属于S3状态。

那这些用到的概率从哪里读取呢?有个叫“声学模型”的东西,里面存了一大堆参数,通过这些参数,就可以知道帧和状态对应的概率。获取这一大堆参数的方法叫做“训练”,需要使用巨大数量的语音数据,训练的方法比较繁琐,这里不讲。

 

但这样做有一个问题:每一帧都会得到一个状态号,最后整个语音就会得到一堆乱七八糟的状态号,相邻两帧间的状态号基本都不相同。假设语音有1000帧,每帧对应1个状态,每3个状态组合成一个音素,那么大概会组合成300个音素,但这段语音其实根本没有这么多音素。如果真这么做,得到的状态号可能根本无法组合成音素。实际上,相邻帧的状态应该大多数都是相同的才合理,因为每帧很短。

 

解决这个问题的常用方法就是使用隐马尔可夫模型(Hidden Markov Model,HMM)。这东西听起来好像很高深的样子,实际上用起来很简单:

第一步,构建一个状态网络。

第二步,从状态网络中寻找与声音最匹配的路径。

 

这样就把结果限制在预先设定的网络中,避免了刚才说到的问题,当然也带来一个局限,比如你设定的网络里只包含了“今天晴天”和“今天下雨”两个句子的状态路径,那么不管说些什么,识别出的结果必然是这两个句子中的一句。

 

那如果想识别任意文本呢?把这个网络搭得足够大,包含任意文本的路径就可以了。但这个网络越大,想要达到比较好的识别准确率就越难。所以要根据实际任务的需求,合理选择网络大小和结构。

 

搭建状态网络,是由单词级网络展开成音素网络,再展开成状态网络。语音识别过程其实就是在状态网络中搜索一条最佳路径,语音对应这条路径的概率最大,这称之为“解码”。路径搜索的算法是一种动态规划剪枝的算法,称之为Viterbi算法,用于寻找全局最优路径。

这里所说的累积概率,由三部分构成,分别是:

  1. 观察概率:每帧和每个状态对应的概率

  2. 转移概率:每个状态转移到自身或转移到下个状态的概率

  3. 语言概率:根据语言统计规律得到的概率

     

其中,前两种概率从声学模型中获取,最后一种概率从语言模型中获取。语言模型是使用大量的文本训练出来的,可以利用某门语言本身的统计规律来帮助提升识别正确率。语言模型很重要,如果不使用语言模型,当状态网络较大时,识别出的结果基本是一团乱麻。

 

以上介绍的是传统的基于HMM的语音识别。事实上,HMM的内涵绝不是上面所说的“无非是个状态网络”那么简单。以上的文字只是想让大家容易理解,并不追求严谨。

2014-01-19 21:58:10 u010384318 阅读数 30872
  • C++语音识别开篇

    本篇mark老师将教大家使用第三方库的调用来简单的实现语音识别。随着机器学习和人工智能的热闹,国内语音行业也可谓是百花齐放。 语音识别一个伟大的时代已在我们身边悄悄走来。

    5912 人正在学习 去看看 杨波

   一直想写个关于语音识别系统原理的博文。前段时间我和@零落一起做了很多实验,比如htk,kaldi等。从周五开始就已经放寒假了,明天就做火车回家了。今晚加点劲写点吧,回家由于没网。大家有问题只能留言或者找我qq,我尽量过段时间来回答吧。现在我就把语音识别的原理说下去。

具体的框架图还是来一个把。这个图我也是我从网上找的。

按照上图的说法,语音识别是由语言模型和声学模型构成的。下面我就根据图上的流程说下。

一 特征提取

 现在主流的特征是mfcc。具体mfcc的步骤,在我前面转的博客里也有。地址:语音信号处理之(四)梅尔频率倒谱系数(MFCC)。这里我引有知乎里的一个人的说法:

首先说一下作为输入的时域波形。我们知道声音实际上是一种波。常见的mp3、wmv等格式都是压缩格式,必须转成非压缩的纯波形文件,比如Windows PCM文件,即wav文件来处理。wav文件里存储的除了一个文件头以外,就是声音波形的一个个点了。采样率越大,每毫秒语音中包含的点的个数就越多。另外声音有单通道双通道之分,还有四通道的等等。对语音识别任务来说,单通道就足够了,多了浪费,因此一般要把声音转成单通道的来处理。下图是一个波形的示例。

备注:这个波形你可以用htk里的标注和录音去看。其他的语音处理软件也可以吧。
另外,通常还需要做个VAD处理,也就是把首尾端的静音切除,降低对后续步骤造成的干扰,这需要用到信号处理的一些技术。
时域的波形必须要分帧,也就是把波形切开成一小段一小段,每小段称为一帧。分帧操作通常使用移动窗函数来实现,分帧之前还要做一些预加重等操作,这里不详述。帧与帧之间是有交叠的,就像下图这样:

图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。
分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须将波形作变换。常见的一种变换方法是提取MFCC特征,把每一帧波形变成一个12维向量。这12个点是根据人耳的生理特性提取的,可以理解为这12个点包含了这帧语音的内容信息。这个过程叫做声学特征提取。实际应用中,这一步有很多细节,比如差分、均值方差规整、高斯化、降维去冗余等,声学特征也不止有MFCC这一种,具体就不详述了。

备注:mfcc的一些处理还是有很多研究的东西。等寒假回来可以跟大家交流。

这里,每个工具箱提供的特征都是不一样的。具体的可以去参考各个工具箱的说明。如:htkbook的第五章。

最后,这个mfcc的变形有很多,也就是对于mfcc的改进也很多。适合自己的才是最好的。此外,这步处理后就是一组13维*帧数的二维向量。这步在训练和测试都得做。

二 声学模型

 特征提取完毕就是声学模型的事情。通常需要大量的数据来训练我们的声学模型。这样,我们最后的识别率才是理想。这步就是用马尔科夫模型的过程。具体的细节我暂时也写不清楚。我贴一个图,希望对你理解有好处。

稍微说明一下:最下面的observation就是我们提取的特征。gmm-hmm就是把我们的特征用混合高斯模型区模拟,然后把均值和方差输入到hmm的模型里。

此外,dnn-hmm的模型图:

最后是dbn-hmm:

 

希望我寒假过来可以很好的解释这三个图,如果有人可以解释这三个图,欢迎和我联系,与我交流。谢谢……

这些就是声学模型的全部了。如果你有时间,欢迎分享你的理解。

三 语言模型

   语言模型,我就引用@zouxy09的博客。

  语言模型是用来计算一个句子出现概率的概率模型。它主要用于决定哪个词序列的可能性更大,或者在出现了几个词的情况下预测下一个即将出现的词语的内容。换一个说法说,语言模型是用来约束单词搜索的。它定义了哪些词能跟在上一个已经识别的词的后面(匹配是一个顺序的处理过程),这样就可以为匹配过程排除一些不可能的单词。

   语言建模能够有效的结合汉语语法和语义的知识,描述词之间的内在关系,从而提高识别率,减少搜索范围。语言模型分为三个层次:字典知识,语法知识,句法知识

    对训练文本数据库进行语法、语义分析,经过基于统计模型训练得到语言模型。语言建模方法主要有基于规则模型和基于统计模型两种方法。统计语言模型是用概率统计的方法来揭示语言单位内在的统计规律,其中N-Gram模型简单有效,被广泛使用。它包含了单词序列的统计。

     N-Gram模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。常用的是二元的Bi-Gram和三元的Tri-Gram

  四 待续……还有很多,……寒假过来补吧……

  希望这个对大家理解整个过程有点用。具体的细节过程寒假过后补过来。如果大家有任何想法和建议,欢迎留言和与我交流。

 

最后,这是本命年最后一个博客应该。来年我希望我自己可以在语音识别做得更多,希望和大家一起学习,一起努力……加油……提前祝大家新春快乐。

 

没有更多推荐了,返回首页