go 订阅
Go(又称 Golang)是 Google 的 Robert Griesemer,Rob Pike 及 Ken Thompson 开发的一种静态强类型、编译型语言。Go 语言语法与 C 相近,但功能上有:内存安全,GC(垃圾回收),结构形态及 CSP-style 并发计算。 展开全文
Go(又称 Golang)是 Google 的 Robert Griesemer,Rob Pike 及 Ken Thompson 开发的一种静态强类型、编译型语言。Go 语言语法与 C 相近,但功能上有:内存安全,GC(垃圾回收),结构形态及 CSP-style 并发计算。
信息
发布于
2009年
最新版本
1.14
发布组织
Google
中文名
Golang
属    性
编程语言
外文名
Golang
go简介
Go(又称Golang)是Google开发的一种静态强类型、编译型、并发型,并具有垃圾回收功能的编程语言。罗伯特·格瑞史莫(Robert Griesemer),罗勃·派克(Rob Pike)及肯·汤普逊(Ken Thompson)于2007年9月开始设计Go,稍后Ian Lance Taylor、Russ Cox加入项目。Go是基于Inferno操作系统所开发的。Go于2009年11月正式宣布推出,成为开放源代码项目,并在Linux及Mac OS X平台上进行了实现,后来追加了Windows系统下的实现。在2016年,Go被软件评价公司TIOBE 选为“TIOBE 2016 年最佳语言”。 目前,Go每半年发布一个二级版本(即从a.x升级到a.y)。 [1] 
收起全文
精华内容
参与话题
问答
  • Go语言编程

    万人学习 2014-11-29 10:20:02
    Go 的前世今生与 Go 语言编程的基础教学,以及七牛云存储应用 Go 的实践分享。
  • 我为什么放弃Go语言

    万次阅读 多人点赞 2014-04-14 19:24:19
    我为什么放弃Go语言?有好几次,当我想起来的时候,总是会问自己:这个决定是正确的吗?是明智和理性的吗?其实我一直在认真思考这个问题。开门见山地说,我当初放弃Go语言,就是因为两个“不爽”:第一,对Go语言...

    我为什么放弃Go语言

    作者:庄晓立(Liigo)

    日期:2014年3月

    原创链接:http://blog.csdn.net/liigo/article/details/23699459

    转载请注明出处:http://blog.csdn.net/liigo

     

    有好几次,当我想起来的时候,总是会问自己:我为什么要放弃Go语言?这个决定是正确的吗?是明智和理性的吗?其实我一直在认真思考这个问题。

    开门见山地说,我当初放弃Go语言(golang),就是因为两个“不爽”:第一,对Go语言本身不爽;第二,对Go语言社区里的某些人不爽。毫无疑问,这是非常主观的结论。但是我有足够详实的客观的论据,用以支撑这个看似主观的结论。

    文末附有本文更新日志。

     

    第0节:我的Go语言经历

    先说说我的经历吧,以避免被无缘无故地当作Go语言的低级黑。

    2009年底,Go语言(golang)第一个公开版本发布,笼罩着“Google公司制造”的光环,吸引了许多慕名而来的尝鲜者,我(Liigo)也身居其中,笼统的看了一些Go语言的资料,学习了基础的教程,因对其语法中的分号和花括号不满,很快就遗忘掉了,没拿它当一回事。

    两年之后,2011年底,Go语言发布1.0的计划被提上日程,相关的报道又多起来,我再次关注它,[重新评估][1]之后决定深入参与Go语言。我订阅了其users、nuts、dev、commits等官方邮件组,坚持每天阅读其中的电子邮件,以及开发者提交的每一次源代码更新,给Go提交了许多改进意见,甚至包括[修改Go语言编译器源代码][2]直接参与开发任务。如此持续了数月时间。

    到2012年初,Go 1.0发布,语言和标准库都已经基本定型,不可能再有大幅改进,我对Go语言未能在1.0定型之前更上一个台阶、实现自我突破,甚至带着诸多明显缺陷走向1.0,感到非常失望,因而逐渐疏远了它(所以Go 1.0之后的事情我很少关心)。后来看到即将发布的Go 1.1的Release Note,发现语言层面没有太大改变,只是在库和工具层面有所修补和改进,感到它尚在幼年就失去成长的动力,越发失望。外加Go语言社区里的某些人,其中也包括Google公司负责开发Go语言的某些人,其态度、言行,让我极度厌恶,促使我决绝地离弃Go语言。

    在上一个10年,我(Liigo)在我所属的公司里,深度参与了两个编程语言项目的开发。我想,对于如何判断某个编程语言的优劣,或者说至少对于如何判断某个编程语言是否适合于我自己,我应该还是有一点发言权的。

    [1]: https://plus.google.com/+LiigoZhuang/posts/CpRNPeDXUDW

    [2]: http://blog.csdn.net/liigo/article/details/7467309

    第1节:我为什么对Go语言不爽?

    Go语言有很多让我不爽之处,这里列出我现在还能记起的其中一部分,排名基本上不分先后。读者们耐心地看完之后,还能淡定地说一句“我不在乎”吗?

    1.1 不允许左花括号另起一行

    关于对花括号的摆放,在C语言、C++、Java、C#等社区中,十余年来存在持续争议,从未形成一致意见。在我看来,这本来就是主观倾向很重的抉择,不违反原则不涉及是非的情况下,不应该搞一刀切,让程序员或团队自己选择就足够了。编程语言本身强行限制,把自己的喜好强加给别人,得不偿失。无论倾向于其中任意一种,必然得罪与其对立的一群人。虽然我现在已经习惯了把左花括号放在行尾,但一想到被禁止其他选择,就感到十分不爽。Go语言这这个问题上,没有做到“团结一切可以团结的力量”不说,还有意给自己树敌,太失败了。

    1.2 编译器莫名其妙地给行尾加上分号

    对Go语言本身而言,行尾的分号是可以省略的。但是在其编译器(gc)的实现中,为了方便编译器开发者,却在词法分析阶段强行添加了行尾的分号,反过来又影响到语言规范,对“怎样添加分号”做出特殊规定。这种变态做法前无古人。在左花括号被意外放到下一行行首的情况下,它自动在上一行行尾添加的分号,会导致莫名其妙的编译错误(Go 1.0之前),连它自己都解释不明白。如果实在处理不好分号,干脆不要省略分号得了;或者,Scala和JavaScript的编译器是开源的,跟它们学学怎么处理省略行尾分号可以吗?

    1.3 极度强调编译速度,不惜放弃本应提供的功能

    程序员是人不是神,编码过程中免不了因为大意或疏忽犯一些错。其中有一些,是大家集体性的很容易就中招的错误(Go语言里的例子我暂时想不起来,C++里的例子有“基类析构函数不是虚函数”)。这时候编译器应该站出来,多做一些检查、约束、核对性工作,尽量阻止常规错误的发生,尽量不让有潜在错误的代码编译通过,必要时给出一些警告或提示,让程序员留意。编译器不就是机器么,不就是应该多做脏活累活杂活、减少人的心智负担么?编译器多做一项检查,可能会避免数十万程序员今后多年内无数次犯同样的错误,节省的时间不计其数,这是功德无量的好事。但是Go编译器的作者们可不这么想,他们不愿意自己多花几个小时给编译器增加新功能,觉得那是亏本,反而减慢了编译速度。他们以影响编译速度为由,拒绝了很多对编译器改进的要求。典型的因噎废食。强调编译速度固然值得赞赏,但如果因此放弃应有的功能,我不赞成。

    1.4 错误处理机制太原始

    在Go语言中处理错误的基本模式是:函数通常返回多个值,其中最后一个值是error类型,用于表示错误类型极其描述;调用者每次调用完一个函数,都需要检查这个error并进行相应的错误处理:if err != nil { /*这种代码写多了不想吐么*/ }。此模式跟C语言那种很原始的错误处理相比如出一辙,并无实质性改进。实际应用中很容易形成多层嵌套的if else语句,可以想一想这个编码场景:先判断文件是否存在,如果存在则打开文件,如果打开成功则读取文件,如果读取成功再写入一段数据,最后关闭文件,别忘了还要处理每一步骤中出现错误的情况,这代码写出来得有多变态、多丑陋?实践中普遍的做法是,判断操作出错后提前return,以避免多层花括号嵌套,但这么做的后果是,许多错误处理代码被放在前面突出的位置,常规的处理逻辑反而被掩埋到后面去了,代码可读性极差。而且,error对象的标准接口只能返回一个错误文本,有时候调用者为了区分不同的错误类型,甚至需要解析该文本。除此之外,你只能手工强制转换error类型到特定子类型(静态类型的优势没了)。至于panic - recover机制,致命的缺陷是不能跨越库的边界使用,注定是一个半成品,最多只能在自己的pkg里面玩一玩。Java的异常处理虽然也有自身的问题(比如Checked Exceptions),但总体上还是比Go的错误处理高明很多。

    1.5 垃圾回收器(GC)不完善、有重大缺陷

    在Go 1.0前夕,其垃圾回收器在32位环境下有内存泄漏,一直拖着不肯改进,这且不说。Go语言垃圾回收器真正致命的缺陷是,会导致整个进程不可预知的间歇性停顿(Stop the World)。像某些大型后台服务程序,如游戏服务器、APP容器等,由于占用内存巨大,其内存对象数量极多,GC完成一次回收周期,可能需要数秒甚至更长时间,这段时间内,整个服务进程是阻塞的、停顿的,在外界看来就是服务中断、无响应,再牛逼的并发机制到了这里统统失效。垃圾回收器定期启动,每次启动就导致短暂的服务中断,这样下去,还有人敢用吗?这可是后台服务器进程,是Go语言的重点应用领域。以上现象可不是我假设出来的,而是事实存在的现实问题,受其严重困扰的也不是一家两家了(2013年底ECUG Con 2013京东的刘奇提到了Go语言的GC、defer、标准库实现是性能杀手,最大的痛苦是GC;美团的沈锋也提到Go语言的GC导致后台服务间隔性停顿是最大的问题。更早的网络游戏仙侠道开发团队也曾受Go垃圾回收的沉重打击)。在实践中,你必须努力减少进程中的对象数量,以便把GC导致的间歇性停顿控制在可接受范围内。除此之外你别无选择(难道你还想自己更换GC算法、甚至砍掉GC?那还是Go语言吗?)。跳出圈外,我近期一直在思考,一定需要垃圾回收器吗?没有垃圾回收器就一定是历史的倒退吗?(可能会新写一篇博客文章专题探讨。)

    2016年3月3日Liigo补记:直到2015年底,Go 1.5新GC发布后数月,仍获知有大陆圈内知名团队因为GC的原因考虑换掉Go语言,颇有感触。当软件系统逐步发展到更庞大更复杂的时候,Go语言的垃圾回收器(GC)就变成了指不定啥时候会出现的拦路虎,让人进退两难。进,暂时没有确切有效的技术手段对付响应延迟和内存暴涨;退,多年开发付出的心血付之东流损失惨重。语言选型之前多做调查分析,如果一定要用Go语言开发,控制系统规模和复杂度,避开底层的核心业务,可能是比较明智的选择。

    1.6 禁止未使用变量和多余import

    Go编译器不允许存在被未被使用的变量和多余的import,如果存在,必然导致编译错误。但是现实情况是,在代码编写、重构、调试过程中,例如,临时性的注释掉一行代码,很容易就会导致同时出现未使用的变量和多余的import,直接编译错误了,你必须相应的把变量定义注释掉,再翻页回到文件首部把多余的import也注释掉,……等事情办完了,想把刚才注释的代码找回来,又要好几个麻烦的步骤。还有一个让人蛋疼的问题,编写数据库相关的代码时,如果你import某数据库驱动的pkg,它编译给你报错,说不需要import这个未被使用的pkg;但如果你听信编译器的话删掉该import,编译是通过了,运行时必然报错,说找不到数据库驱动;你看看程序员被折腾的两边不是人,最后不得不请出大神:`import _`。对待这种问题,一个比较好的解决方案是,视其为编译警告而非编译错误。但是Go语言开发者很固执,不容许这种折中方案。

    1.7 创建对象的方式太多令人纠结

    创建对象的方式,调用new函数、调用make函数、调用New方法、使用花括号语法直接初始化结构体,你选哪一种?不好选择,因为没有一个固定的模式。从实践中看,如果要创建一个语言内置类型(如channel、map)的对象,通常用make函数创建;如果要创建标准库或第三方库定义的类型的对象,首先要去文档里找一下有没有New方法,如果有就最好调用New方法创建对象,如果没有New方法,则退而求其次,用初始化结构体的方式创建其对象。这个过程颇为周折,不像C++、Java、C#那样直接new就行了。

    1.8 对象没有构造函数和析构函数

    没有构造函数还好说,毕竟还有自定义的New方法,大致也算是构造函数了。没有析构函数就比较难受了,没法实现RAII。额外的人工处理资源清理工作,无疑加重了程序员的心智负担。没人性啊,还嫌我们程序员加班还少吗?C++里有析构函数,Java里虽然没有析构函数但是有人家finally语句啊,Go呢,什么都没有。没错,你有个defer,可是那个defer问题更大,详见下文吧。

    1.9 defer语句的语义设定不甚合理

    Go语言设计defer语句的出发点是好的,把释放资源的“代码”放在靠近创建资源的地方,但把释放资源的“动作”推迟(defer)到函数返回前执行。遗憾的是其执行时机的设置似乎有些不甚合理。设想有一个需要长期运行的函数,其中有无限循环语句,在循环体内不断的创建资源(或分配内存),并用defer语句确保释放。由于函数一直运行没有返回,所有defer语句都得不到执行,循环过程中创建的大量短暂性资源一直积累着,得不到回收。而且,系统为了存储defer列表还要额外占用资源,也是持续增加的。这样下去,过不了多久,整个系统就要因为资源耗尽而崩溃。像这类长期运行的函数,http.ListenAndServe()就是典型的例子。在Go语言重点应用领域,可以说几乎每一个后台服务程序都必然有这么一类函数,往往还都是程序的核心部分。如果程序员不小心在这些函数中使用了defer语句,可以说后患无穷。如果语言设计者把defer的语义设定为在所属代码块结束时(而非函数返回时)执行,是不是更好一点呢?可是Go 1.0早已发布定型,为了保持向后兼容性,已经不可能改变了。小心使用defer语句!一不小心就中招。

    1.10 许多语言内置设施不支持用户定义的类型

    for in、make、range、channel、map等都仅支持语言内置类型,不支持用户定义的类型(?)。用户定义的类型没法支持for in循环,用户不能编写像make、range那样“参数类型和个数”甚至“返回值类型和个数”都可变的函数,不能编写像channel、map那样类似泛型的数据类型。语言内置的那些东西,处处充斥着斧凿的痕迹。这体现了语言设计的局限性、封闭性、不完善,可扩展性差,像是新手作品——且不论其设计者和实现者如何权威。延伸阅读:Go语言是30年前的陈旧设计思想,用户定义的东西几乎都是二等公民(Tikhon Jelvis)。

    1.11 没有泛型支持,常见数据类型接口丑陋

    没有泛型的话,List、Set、Tree这些常见的基础性数据类型的接口就只能很丑陋:放进去的对象是一个具体的类型,取出来之后成了无类型的interface{}(可以视为所有类型的基础类型),还得强制类型转换之后才能继续使用,令人无语。Go语言缺少min、max这类函数,求数值绝对值的函数abs只接收/返回双精度小数类型,排序接口只能借助sort.Interface无奈的回避了被比较对象的类型,等等等等,都是没有泛型导致的结果。没有泛型,接口很难优雅起来。Go开发者没有明确拒绝泛型,只是说还没有找到很好的方法实现泛型(能不能学学已经开源的语言呀)。现实是,Go 1.0已经定型,泛型还没有,那些丑陋的接口为了保持向后兼容必须长期存在着。延伸阅读:HN网友抱怨Go没有泛型

    1.12 实现接口不需要明确声明

    这一条通常是被当作Go语言的优点来宣传的。但是也有人不赞同,比如我。如果一个类型用Go语言的方式默默的实现了某个接口,使用者和代码维护者都很难发现这一点(除非仔细核对该类型的每一个方法的函数签名,并跟所有可能的接口定义相互对照),自然也想不到与该接口有关的应用,显得十分隐晦,不直观。支持者可能会辩解说,我可以在文档中注明它实现了哪些接口。问题是,写在文档中,还不如直接写到类型定义上呢,至少还能得到编译器的静态类型检查。缺少了编译器的支持,当接口类型的函数签名被改变时,当实现该接口的类型方法被无意中改变时,实现者可能很难意识到,该类型实现该接口的隐含约束事实上已经被打破了。又有人辩解说,我可以通过单元测试确保类型正确实现了接口呀。我想说的是,明明可以通过明确声明实现接口,享受编译器提供的类型检查,你却要自己找麻烦,去写原本多余的单元测试,找虐很爽吗?Go语言的这种做法,除了减少一些对接口所在库的依赖之外,没有其他好处,得不偿失。延伸阅读:为什么我不喜欢Go语言式的接口(老赵)。

    1.13 省掉小括号却省不掉花括号

    Go语言里面的if语句,其条件表达式不需要用小括号扩起来,这被作为“代码比较简洁”的证据来宣传。可是,你省掉了小括号,却不能省掉大括号啊,一条完整的if语句至少还得三行吧,人家C、C++、Java都可以在一行之内搞定的(可以省掉花括号)。人家还有x?a:b表达式呢,也是一行搞定,你Go语言用if else写至少得五行吧?哪里简洁了?

    1.14 编译生成的可执行文件尺寸非常大

    记得当年我写了一个很简单的程序,把所有系统环境变量的名称和值输出到控制台,核心代码也就那么三五行,结果编译出来把我吓坏了:EXE文件的大小超过4MB。如果是C语言写的同样功能的程序,0.04MB都是多的。我把这个信息反馈到官方社区,结果人家不在乎。是,我知道现在的硬盘容量都数百GB、上TB了……可您这种优化程度……怎么让我相信您在其他地方也能做到不错呢。(再次强调一遍,我所有的经验和数据都来自Go 1.0发布前夕。)

    1.15 不支持动态加载类库

    静态编译的程序当然是很好的,没有额外的运行时依赖,部署时很方便。但是之前我们说了,静态编译的文件尺寸很大。如果一个软件系统由多个可执行程序构成,累加起来就很可观。如果用动态编译,发布时带同一套动态库,可以节省很多容量。更关键的是,动态库可以运行时加载和卸载,这是静态库做不到的。还有那些LGPL等协议的第三方C库受版权限制是不允许静态编译的。至于动态库的版本管理难题,可以通过给动态库内的所有符号添加版本号解决。无论如何,应该给予程序员选择权,让他们自己决定使用静态库还是动态库。一刀切的拒绝动态编译是不合适的。

    1.16 其他

    • 不支持方法和函数重载(overload)
    • 导入pkg的import语句后边部分竟然是文本(import ”fmt”)
    • 没有enum类型,全局性常量难以分类,iota把简单的事情复杂化
    • 定义对象方法时,receiver类型应该选用指针还是非指针让人纠结
    • 定义结构体和接口的语法稍繁,interface XXX{} struct YYY{} 不是更简洁吗?前面加上type关键字显得罗嗦。
    • 测试类库testing里面没有AssertEqual函数,标准库的单元测试代码中充斥着if a != b { t.Fatal(...) }
    • 语言太简单,以至于不得不放弃很多有用的特性,“保持语言简单”往往成为拒绝改进的理由。
    • 标准库的实现总体来说不甚理想,其代码质量大概处于“基本可用”的程度,真正到企业级应用领域,往往就会暴露出诸多不足之处。
    • 版本都发展到1.2了,goroutine调度器依旧默认仅使用一个系统线程。GOMAXPROCS的长期存在似乎暗示着官方从来没有足够的信心,让调度器正确安全地运行在多核环境中。这跟Go语言自身以并发为核心的定位有致命的矛盾。(直到2015年下半年1.5发布后才有改观
    • 官方发行版中包含了一个叫oracle的辅助程序,与Oracle数据库毫无关系,却完全无视两者之间的名称混淆。

    上面列出的是我目前还能想到的对Go语言的不爽之处,毕竟时间过去两年多,还有一些早就遗忘了。其中一部分固然是小不爽,可能忍一忍就过去了,但是很多不爽积累起来,总会时不时地让人难受,时间久了有自虐的感觉。程序员的工作生活本来就够枯燥的,何必呢。

    必须要说的是,对于其中大多数不爽之处,我(Liigo)都曾经试图改变过它们:在Go 1.0版本发布之前,我在其官方邮件组提过很多意见和建议(甚至包括提交代码CL),极力据理力争,可以说付出很大努力,目的就是希望定型后的Go语言是一个相对完善的、没有明显缺陷的编程语言。结果是令人失望的,我人微言轻、势单力薄,不可能影响整个语言的发展走向。1.0之前,最佳的否定自我、超越自我的机会,就这么遗憾地错过了。我最终发现,很多时候不是技术问题,而是技术人员的问题。

    第2节:我为什么对Go语言的某些人不爽?

    这里提到的“某些人”主要是两类:一、负责专职开发Go语言的Google公司员工;二、Go语言的推崇者和脑残粉丝。我跟这两类人打过很多交道,不胜其烦。再次强调一遍,我指的是“某些”人,而不是所有人,请不要对号入座。

    Google公司内部负责专职开发Go语言的核心开发组某些成员,他们倾向于闭门造车,固执己见,对第三方提出的建议不重视。他们常常挂在嘴边的口头禅是:现有的做法很好、不需要那个功能、我们开发Go语言是给Google自己用的、Google不需要那个功能、如果你一定要改请fork之后自己改、别干提意见请提交代码。很多言行都是“反开源”的。通过一些具体的例子,还能更形象的看清这一层。就留下作为课后作业吧。

    我最不能接受的就是他们对1.0版本的散漫处理。那时候Go还没到1.0,初出茅庐的小学生,有很大的改进空间,是全面翻新的最佳时机,彼时不改更待何时?1.0是打地基的版本,基础不牢靠,等1.0定型之后,处处受到向后兼容性的牵制,束手缚脚,每前进一步都阻力重重。急于发布1.0,过早定型,留下诸多遗憾,彰显了开发者的功利性强,在技术上不追求尽善尽美。

    Go语言的核心开发成员,他们日常的开发工作是使用C语言——Go语言的编译器和运行时库,包括语言核心数据结构和算法map、channel、scheduler,都是C开发的——真正用自己开发的Go语言进行实际的大型应用开发的机会并不多。虽然标准库是用Go语言自己写的,但他们却没有大范围使用标准库的经历。实际上,他们缺少使用Go语言的实战开发经验,往往不知道处于开发第一线的用户真正需要什么,无法做到设身处地为程序员着想。缺少使用Go语言的亲身经历,也意味着他们不能在日常开发中,及时发现和改进Go语言的不足。这也是他们往往自我感觉良好的原因。(2016年5月15日补记:2015年8月Go 1.5版本之后不再使用C语言开发。)

    Go语言社区里,有一大批Go语言的推崇者和脑残粉丝,他们满足于现状,不思进取,处处维护心中的“神”,容不得批评意见,不支持对语言的改进要求。当年我对Go语言的很多批评和改进意见,极少得到他们的支持,他们不但不支持还给予打击,我就纳闷了,他们难道不希望Go语言更完善、更优秀吗?我后来才意识到,他们跟乔帮主的苹果脑残粉丝们,言行一脉相承,具有极端宗教倾向,神化主子、打击异己真是不遗余力呀。简简单单的技术问题,就能被他们上升到意识形态之争。现实的例子是蛮多的,有兴趣的到网上去找吧。正是因为他们的存在,导致更多理智、清醒的Go语言用户无法真正融入整个社区。

    如果一个项目、团队、社区,到处充斥着赞美、孤芳自赏、自我满足、不思进取,排斥不同意见,拒绝接纳新方案,我想不到它还有什么前进的动力。逆水行舟,是不进反退的。

    2016年5月15日补记:@netroby:“Golang社区的神经病和固执,我深有体会。我曾经发过Issue,请求Golang官方,能为doc加上高亮,这样浏览器阅读文档的时候,能快速阅读代码参考。但是被各种拒绝. 他们的理由是很多开发者不喜欢高亮。” https://github.com/golang/go/issues/13178

    2016年5月15日补记:C++天才人物、D语言联合创始人Andrei Alexandrescu:“Go所走的路线在一些问题上持有极其强硬和死板态度,这些问题有大有小。在比较大的方面,泛型编程被严格控制,甚至贬低到只有"N"个字;有关泛型编程的讨论都是试图去劝阻任何有意义的尝试,这已经足够让人觉得耻辱。从长远来看,技术问题的政治化是一种极其有害的模式,所以希望Go社区能够找到修正它的方法。”  http://www.csdn.net/article/2015-12-20/2826517

    第3节:还有比Go语言更好的选择吗?

    我始终坚持一个颇有辩证法意味的哲学观点:在更好的替代品出现之前,现有的就是最好的。失望是没有用的,抱怨是没有用的,要么接受,要么逃离。我曾经努力尝试过接受Go语言,失败之后,注定要逃离。发现更好的替代品之后,无疑加速了逃离过程。还有比Go语言更好的替代品吗?当然有。作为一个屌丝程序员,我应该告诉你它是什么,但是我不说。现在还不是时候。我现在不想把这两门编程语言对立起来,引发另一场潜在的语言战争。这不是此文的本意。如果你非要从现有信息中推测它是什么,那完全是你自己的事。如果你原意等,它或许很快会浮出水面,也未可知。

    第4节:写在最后

    我不原意被别人代表,也不愿意代表别人。这篇文章写的是我,一个叫Liigo的80后屌丝程序员,自己的观点。你完全可以主观地认为它是主观的,也完全可以客观地以为它是客观的,无论如何,那是你的观点。

    这篇文字是从记忆里收拾出来的。有些细节虽可考,而不值得考。——我早已逃离,不愿再回到当年的场景。文中涉及的某些细节,可能会因为些许偏差,影响其准确性;也可能会因为缺少出处,影响其客观性。如果有人较真,非要去核实,我相信那些东西应该还在那里。

    Go语言也非上文所述一无是处,它当然有它的优势和特色。读者们判断一件事物,应该是优劣并陈,做综合分析,不能单听我一家负面之言。但是它的那些不爽之处,始终让我不爽,且不能从其优秀处得以完全中和,这是我不得不放弃它的原因。

     

     


     

    Liigo 2014-4-29 补记1

    Go语言社区还有一个很奇特的现象,就是中国社区独大,国外社区要小的多。有外国网友还专门写了一篇文章研究《为什么Golang中国社区独大》这个问题(文中也提到了我这篇博文)。通常来说,在IT和软件领域,向来都是国外先进国家引领技术潮流,然后国内缓慢跟进。而到了Go语言这里,恰恰反过来了,似乎暗示着在国外的主流软件开发技术人员并不怎么待见Go语言,Go只是在国内受到一帮人的盲目推崇而已,至于这帮人的眼光如何,反正我不看好。

    Liigo 2014-4-29 补记2

    著名的编程语言研究专家王垠写了一篇《对 Go 语言的综合评价》(晚于本博文发表约三五天),也是总体上持批判态度,看衰Go语言。读者们可以对照阅读。

    Liigo 2014-4-29 补记3

    Go语言的拥护者们,似乎连Go语言的“核心优势”都说不出几条。知乎上很有人气的一条问答《为什么要使用 Go 语言,Go 语言的优势在哪里》,连静态编译、GC、跨平台都拿出来说了(无视C/C++/Java),甚至连简单易学(无视Python/易语言)、“丰富的”标准库(跟谁比?敢跟Java/C#/Python比么?)、好用的工具链(gofmt)都扯出来了,可见除了“并发、网络”之外,他们也讲不出另外的什么核心优势了,只能靠一些周边的东西凑数。

    Liigo 2015-1-31 补记4

    全世界认为Go语言不好的可不只是我Liigo一个人。国外著名的问答网站Quora上面有个人气很高的提问,“为什么不要用Go语言”(英文网页),看看那排名最前的两个答案,以及广大程序员们给这两个答案的数百个“赞”,都足以说明Go语言自身的问题是客观存在的。人民群众的眼睛是雪亮的。

    Liigo 2015-4-1 补记5

    文中1.10(黑魔法)和1.12(接口)章节增加了两处“延伸阅读”链接,被引用的链接后面均有大量网友评论。此举主要是为了说明本文观点并非一家之言。

    Liigo 2015-5-29 补记6

    补充说明Go语言直到2015年下半年1.5发布后才将GOMAXPROCS设置为大于1的默认值(HN),他们文中承认之前一直默认设置为1是因为调度器不完善(与我此文最初发表时的猜测一致)。

    Liigo 2015-6-2 补记7

    补充两篇英文:Why Go Is Not Good(作者Will Yager重点批评了Go语言的设计不佳甚至是倒退),Leaving Go(作者Danny Gratzer放弃Go语言的原因主要是:没有泛型,充满黑魔法)。这两篇文章都是针对具体问题做具体分析的,与本文写作精神一致,务实不务虚。其中提到的对Go语言不满的地方,本文也多有涉及,结论类似。

    Liigo 2015-7-2 补记8

    前两天网上出现了一篇本文的驳文,《驳狗屎文 "我为什么放弃Go语言"》,作者是chai2010,请读者们参照阅读,顺便领略一下本文后半部分描述过的Go粉的"风采"。(这篇驳文至少有两个好处:1 它全文引用了本文(便于读者参照);2 使用了本文当时的最新版(包含了补记7)。)

    Liigo 2015-7-3 补记9

    文中1.5节(垃圾回收器/GC)增加 “Stop the world” 相关的三个链接。

    Liigo 2015-7-17 补记10

    文中1.11节(泛型)增加来自HN的延伸阅读链接,开发者们抱怨Go欠缺泛型支持。

    Liigo 2016-3-3 补记11

    文中1.5节(垃圾回收器/GC)末尾增加一段,再次提示开发者重视Go语言GC的潜在问题。

    Liigo 2016-5-15 补记12:

    文中第2节(我为什么对Go社区的人不爽)增加netroby和D语言联合创始人的现身说法。补充说明Go 1.5后不再使用C语言开发。

    Liigo 2020-2-19 补记13:

    本文末尾增加Golang 2.0泛型相关信息。

     

    关于对作者倾向性质疑的声明

    读者看到本文全都是Go语言负面性的内容,没有涉及一点Go语言好的地方,因而质疑作者的盲目倾向。出现这种结果完全是因为文章主题所限。此前本文末尾也简单提到过,评估一件事物,应当优劣并陈,优势项加分,劣势项减分,做综合评估分析。如果有突出的重大优势,则可以容忍一些较大的劣势;但如果有致命的劣势或多项大劣势,则再大的优势也无法与之中和。中国乒乓球界讲领军人物必须做到“技术全面,特长突出,没有明显弱点”,我甚为赞同。用这句话套用Go语言,可以说“技术不全面(人家自己说成简洁),有一点特长(并发),有明显的弱点(包括但不限于本文列出的这些)”。如此一来,优势都被劣势中和了,劣势还是那么突出,自然是得负分,自然是弃用,自然是没有好印象。我在这里可以说观点鲜明、态度明确,不和稀泥。与其看那些盲目推崇Go语言的人和文章,笼统的说“好”,不如也顺便看看本文,具体到细节地说“不好”。凡是具体到细节的东西,都是容易证实或证伪的,比笼统的东西(无论是"黑"还是"粉")可信性更高一些。

     

    关于对作者阴谋论的声明

    有某些阴谋论者(例如谢某),说我因一个Pull Request被Go开发者拒绝而“怀恨至今”,暗示此文是故意报复、抹黑Go语言。我对Golang有恨吗?当然是有的,那是一个不爽接一个不爽(如本文一一罗列的那些),逐步累积,由量变形成质变的结果,是我对Golang综合客观评估之后的主观态度,并非由哪一个单独的事件所主导。要说Pull Request被拒绝,Rust开发者拒绝我的PR次数还少吗?比如 https://github.com/mozilla/rust/pull/13014 和 https://github.com/liigo/rust/tree/xp (https://github.com/rust-lang/rust/issues/12842),要是再算上被拒的Issues,那就多的数不清了。我显然不可能因为某些个别的事件,影响到我对某个事物的综合评估(参见前文)。那本文是“故意抹黑”Go语言吗?我觉得不是,理由有二:1、这是作者的主观感受,2、这些感受是以许多客观事实为基础的。如果本文一一列出的那些现象,是不存在的,是虚构出来的,是凭空生成的,那么作者一定是“低级黑”。问题是,那些都是客观存在的事实。把事实说出来,怎么能叫“黑”呢?欢迎读者客观而详细的指正本文中的所有错误。

     

    关于Golang 2.0的泛型

    今天(2020年2月19日)看到HN的一篇关于 Go2 Generics 的讨论。有网友说到:

    Ken Thompson and Rob Pike are mostly out not at all involved with Go anymore. They are 2/3 of the original creators. It’s different people making the decisions now.

    我找到如下两个链接基本证实了Rob Pike确实已经淡出Golang的核心开发组:

    Rob Pike最近两年仅提交了4k行无关紧要的代码;Ken Thompson就更不用说了,许多年前就已经淡出;Russ Cox似乎也不太参与Go2相关的决策。如此看来,对于Go2的泛型而言,非技术方面的障碍已不存在,剩下只是技术性障碍。

    Ian Lance Taylor 上周(2020年2月13日)说到

    We're working on it. Some things take time.

     

    展开全文
  • Go语言图形界面开发:Go版GTK

    万次阅读 热门讨论 2018-02-08 21:17:27
  • Go 语言是一种什么语言

    千次阅读 2019-05-15 21:46:57
    首先,我想说的是Go语言是一种让你入门了就不想放弃的语言。 Go语言是一个跟C语言,C++语言,Python,Java类似的计算机编程语言。 所谓编程语言,通俗的讲就是实现程序的标识,语法的集合。 Go语言是一门系统级...

    首先,我想说的是Go语言是一种让你入门了就不想放弃的语言。

    Go语言是一个跟C语言,C++语言,Python,Java类似的计算机编程语言。

    所谓编程语言,通俗的讲就是实现程序的标识,语法的集合。

     

    Go语言是一门系统级语言,以前使用其他语言编写的后台,服务器程序,95%以上都可以使用Go语言实现。

    Go语言是一门现代编程语言,规则简单,统一,优雅,吸收了若干编程语言的优点,解决了C,C++, Python等语言一些固有的难点问题

    Go语言是一门正在快速发展,开发人员快速增多的语言。其夺得2017年编程语言排行榜上升榜首。其在中国的开发人员正在快速增加,很多大公司都已经有了Go语言开发组。

    Go语言正在成为后台服务器开发的主流语言,很多以前用python写的项目,正在使用Go语言重写。很多以前需要使用C,C++开发的项目,现在也会用Go语言来实现。

    Go语言的库很完备,能实现非常底层的编程,也就是说是C语言的强大对手。

    Go语言跟Swift的特点有些相似。比如类型推断。 比如swift的类型中的?!,Go语言的类型断言。

     

    更多认知,感悟,成长干货,技术分享,请关注我的公众号「成为很厉害的人」。

    展开全文
  • 为什么大厂都在用GO语言-读透GO语言的切片

    千次阅读 多人点赞 2020-03-11 16:48:42
    近日腾讯发布了《腾讯研发大数据报告》,笔者发现GO语言的使用在鹅厂已经上升到了TOP5的位置了, 我们知道腾讯尤其是Docker容器化这一块,是走在各大厂的前列的,尤其是他们的基于GO语言开发的DEVOPS蓝鲸平台,...

    近日腾讯发布了《腾讯研发大数据报告》,笔者发现GO语言的使用在鹅厂已经上升到了TOP5的位置了,

     

    我们知道腾讯尤其是Docker容器化这一块,是走在各大厂的前列的,尤其是他们的基于GO语言开发的DEVOPS蓝鲸平台,水平相当高。

    经笔者实地上手体验,GO语言在并发等方面还是相当优秀的,笔者在上一篇《一文读透GO语言的哈希表》,曾经和读者聊了一下GO语言,下面笔者就继续上次的话题,汇报一下最新的成果。

    GO语言的切片简介

    切片(slice)是对数组的一个连续片段的引用,所以切片是一个引用类型同,与Python 中的 list 类型比较类似,这个片段可以是整个数组,也可以是由起始和终止索引标识的一些项的子集。Go语言中切片的内部结构包含地址、大小(len)和容量(cap)与数组相比切片最大的特点就是其容量是可变的。

    GO语言的代码解读

    1. append函数添加元素
    Go语言的内建函数 append() 可以为切片动态添加元素,不过需要注意的是,由于切片本身是变长的,因此在使用 append() 函数为切片动态添加元素时,切片就会自动进行“扩容”,同时新切片的长度也会增加,但是有一点需要注意,append返回的是一个新的切片对象,而不是对原切片进行操作。在下面的代码中我们先定义了一个切片a,并不断通过append方式为其增加元素,并观察切片a的长度及容量变化。

    package main
    
    import (
    	"fmt"
    )
    
    func main() {
    
    	var a []int //定义一个切片
    	fmt.Printf("len: %d  cap: %d pointer: %p\n", len(a), cap(a), a)//此时切片长度和容量都是0,运行结果为len: 0  cap: 0 pointer: 0x0
    	a = append(a, 1) // 追加1个元素
    	fmt.Printf("len: %d  cap: %d pointer: %p\n", len(a), cap(a), a)//注意此时a的地址已经发生变化为新的切片了,新切片长度和容量都为1运行结果为:len: 1  cap: 1 pointer: 0xc000072098
    	a = append(a, 2, 3, 4) // 追加多个元素
    	fmt.Printf("len: %d  cap: %d pointer: %p\n", len(a), cap(a), a)//注意此时a的地址再次发生变化实际上又生成为新的切片了,新切片长度和容量都为4运行结果为:len: 4  cap: 4 pointer: 0xc000070160
    	a = append(a, 5) // 再追加一个元素
    	fmt.Printf("len: %d  cap: %d pointer: %p\n", len(a), cap(a), a)//注意切片扩容策略是倍增方式容量由4变成8,而长度是5运行结果为:len: 4  cap: 4 pointer: 0xc000070160
    
    }

    可以观察到切片在扩容时,其容量(cap)的速度规律是以2 倍数进行的。
    2.在切片中元素的删除
    删除切片中开头的N个元素
    使用x = x[N:] 的方式来在切片中删除由第i个元素开始的N个元素
    具体代码如下:

    package main
    
    import (
    	"fmt"
    )
    
    func main() {
    	var a = []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} //使用原始定义法来声明并初始化一个切片
    	fmt.Println(a)                               //运行结果为[1 2 3 4 5 6 7 8 9 10]
    	a = a[1:]                                    // 删除第1个元素
    	fmt.Println(a)                               //删头第1个元素后,运行结果为[2 3 4 5 6 7 8 9 10]
    	a = a[2:]                                    // 删除前2个元素
    	fmt.Println(a)                               //删头前2个元素后,运行结果为[4 5 6 7 8 9 10]
    
    }

     


    3、深入理解GO语言中的切片
    有关切片的代码位置在GOPATH\src\runtime\slice.go,其中对于几个重点函数解读如下:
    1.slice 结构定义
    首先slice是这样一个结构体,他有一个存放数据的数组,和一个长度len与容量cap构成

    type slice struct {    
    array unsafe.Pointer    
    len   int    
    cap   int
    }


    2.创建切片的makeslice函数
    而创建切片的函数makeslice如下,可以看到函数会对于内存进行预分配,如果成功再正式分配内存,他建切片的makeslice函数源码及注释如下:

    func makeslice(et *_type, len, cap int) slice {
       	mem, overflow := math.MulUintptr(et.size, uintptr(cap))//此函数计算et.size也就是每个元素所占空间的大小,并与容量cap相乘,其中mem既为所需要最大内存,overflow代表是否会造成溢出
    	if overflow || mem > maxAlloc || len < 0 || len > cap {//判断是否有溢出,长度为负数或者长度比容量大的情况,如存在 直接panic
    		// NOTE: Produce a 'len out of range' error instead of a
    		// 'cap out of range' error when someone does make([]T, bignumber).
    		// 'cap out of range' is true too, but since the cap is only being
    		// supplied implicitly, saying len is clearer.
    		// See golang.org/issue/4085.
    		mem, overflow := math.MulUintptr(et.size, uintptr(len))
    		if overflow || mem > maxAlloc || len < 0 {
    			panicmakeslicelen()
    		}
    		panicmakeslicecap()
    	}
    	return mallocgc(mem, et, true)// 如果错误检查成功,则分配内存,注意slice对象会被GC所自动清除。
    
    }


    3.扩容函数growslice
    通过阅读growslice的源码可以看在这个函数当中,扩容的规则是在长度小于1024时按照一直采用的是翻倍的方式进行扩容,在大于1024后,每次扩容至原容量的1.25倍,新容量计算完成后对于内存进行预分配,这点也makeslice的想法一致,接下再将老slice中的数据通过memmove(p, old.array, lenmem)的方式拷贝至新的slice。growlice函数源码及注释如下:

    func growslice(et *_type, old slice, cap int) slice {
    
    // 单纯地扩容,不写数据
        if et.size == 0 {
            if cap < old.cap {
                panic(errorString("growslice: cap out of range"))
            }
            // append should not create a slice with nil pointer but non-zero len.
            // We assume that append doesn't need to preserve old.array in this case.
            return slice{unsafe.Pointer(&zerobase), old.len, cap}
        }
    // 扩容规则 1.新的容量大于旧的2倍,直接扩容至新的容量
    // 2.新的容量不大于旧的2倍,当旧的长度小于1024时,扩容至旧的2倍,否则扩容至旧的1.25倍
        newcap := old.cap
        doublecap := newcap + newcap
        if cap > doublecap {
            newcap = cap
        } else {
            if old.len < 1024 {
                newcap = doublecap
            } else {
                for newcap < cap {
                    newcap += newcap / 4
                }
            }
        }
    
    // 跟据切片类型和容量计算要分配内存的大小
      
    var overflow bool
    	var lenmem, newlenmem, capmem uintptr
        switch {
    	case et.size == 1:
    		lenmem = uintptr(old.len)
    		newlenmem = uintptr(cap)
    		capmem = roundupsize(uintptr(newcap))
    		overflow = uintptr(newcap) > maxAlloc
    		newcap = int(capmem)
    	case et.size == sys.PtrSize:
    		lenmem = uintptr(old.len) * sys.PtrSize
    		newlenmem = uintptr(cap) * sys.PtrSize
    		capmem = roundupsize(uintptr(newcap) * sys.PtrSize)
    		overflow = uintptr(newcap) > maxAlloc/sys.PtrSize
    		newcap = int(capmem / sys.PtrSize)
    	case isPowerOfTwo(et.size):
    		var shift uintptr
    		if sys.PtrSize == 8 {
    			// Mask shift for better code generation.
    			shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
    		} else {
    			shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
    		}
    		lenmem = uintptr(old.len) << shift
    		newlenmem = uintptr(cap) << shift
    		capmem = roundupsize(uintptr(newcap) << shift)
    		overflow = uintptr(newcap) > (maxAlloc >> shift)
    		newcap = int(capmem >> shift)
    	default:
    		lenmem = uintptr(old.len) * et.size
    		newlenmem = uintptr(cap) * et.size
    		capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
    		capmem = roundupsize(capmem)
    		newcap = int(capmem / et.size)
    	}
    // 异常情况,旧的容量比新的容量还大或者新的容量超过限制了
        if cap < old.cap || uintptr(newcap) > maxSliceCap(et.size) {
            panic(errorString("growslice: cap out of range"))
        }
    
        var p unsafe.Pointer
        if et.kind&kindNoPointers != 0 {
    
    // 为新的切片开辟容量为capmem的地址空间
            p = mallocgc(capmem, nil, false)
    // 将旧切片的数据搬到新切片开辟的地址中
            memmove(p, old.array, lenmem)
            // The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length).
            // Only clear the part that will not be overwritten.
    // 清理下新切片中剩余地址,不能存放堆栈指针
    
    // memclrNoHeapPointers clears n bytes starting at ptr.
    //
    // Usually you should use typedmemclr. memclrNoHeapPointers should be
    // used only when the caller knows that *ptr contains no heap pointers
    // because either:
    //
    // 1. *ptr is initialized memory and its type is pointer-free.
    //
    // 2. *ptr is uninitialized memory (e.g., memory that's being reused
    //    for a new allocation) and hence contains only "junk".
            memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
        } else {
            // Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
            p = mallocgc(capmem, et, true)
            if !writeBarrier.enabled {
                memmove(p, old.array, lenmem)
            } else {
                for i := uintptr(0); i < lenmem; i += et.size {
                    typedmemmove(et, add(p, i), add(old.array, i))
                }
            }
        }
    
        return slice{p, old.len, newcap}
    }

    GO语言切片的相关结论


    所以通过阅读以上源代码我们也可以知道,有以下两点结论:
    1.append方式为数据增加元素时,如果触发切片进行扩容,则肯定是新生成了一个切片对象,并且涉及内存操作,因此append操作一定要小心。
    2.建议尽量通过make函数来声明一个切片,并在初始时尽量设定好一个合理的容量值,避免切片频繁扩容带来不必要的开销。

    好了准备工作已经结束了,下面我们就可以来写一个GO语言删除重复文件的工具了。
     

    展开全文
  • GO语言

    万次阅读 2020-05-04 13:21:01
    Go语言介绍 第二章 安装Go语言及搭建开发环境 VS Code配置Go语言开发环境 第三章 Go语言基础之变量常量 Go语言基础之基本数据类型 Go语言基础之运算符 Go语言基础之流程控制 Go语言基础之数组 Go语言基础之切片 Go...
  • Go语言编程入门

    万人学习 2016-05-02 23:20:00
    主要介绍Go语言相关的介绍和基础语法,学会开发环境的搭建和使用Go语言简单的编程。本视频教程适合Go语言初学者。
  • Go语言基础

    千次阅读 2013-05-13 09:06:33
    Go语言基础 本节将介绍如何定义变量、常量、Go语言内置类型及Go语言程序设计中的一些技巧。 定义变量 Go语言里面定义变量有多种方式。 使用var关键字是Go语言最基本的定义变量方式,与C语言不同的是Go语言把变量...
  • go语言的goconvey

    万次阅读 2020-09-22 22:10:03
    goconvey是一个支持golang的单元测试框架 goconvey能够自动监控文件修改并启动测试,并可以将测试结果实时输出到web界面 goconvey提供了丰富的断言简化测试用例的编写
  • go语言

    千次阅读 2010-11-19 11:09:00
    go语言
  • Go语言

    千次阅读 2010-01-15 14:42:00
    刚知道Google又发布了一种Go语言,Google的创新力是不可否定的,也十分仰慕Google的技术和理念。可是近来Google要退出中国的消息让我不禁为这位巨人感到惋惜,自从进入中国就有水土不服的表现,这么多年来还是没有能...
  • Go基础编程:Go语言介绍

    千次阅读 2017-09-11 17:53:51
    Go语言是什么 2009年11月10日,Go语言...Go语言的诞生是为了让程序员有更高的生产效率,Go语言专门针对多处理器系统应用程序的编程进行了优化,使用Go编译的程序可以媲美C或C++代码的速度,而且更加安全、支持并...
  • go语言就业指南

    万人学习 2017-05-26 09:41:07
    授人予鱼不如授人予渔,本课程不但包含go语言从业者所的技能,而且还包含开发人员在开发中的学习技巧。掌握这些技巧和技能可以让你在面试中游刃有余。学习过程中任何问题联系: 4223665
  • 概述 上一篇讲了 如何在Windows下安装Go语言编程环境,接下来讲一下入门必修课:第一个Go语言程序——HelloWorld。其实Go语言入门是很简单的,上一篇已经成功在Notepad++中运行HelloWorld,只是在命令行中编译运行...
  • Go语言 Go的网络轮询及IO机制

    千次阅读 2014-04-19 23:21:36
    Go语言中,所有的I/O都是阻塞的,因此我们在写Go系统的时候要秉持一个思想:不要写阻塞的interface和代码,然后通过goroutines和channels来处理并发,而不是用回调和futures。其中一个例子是“net/http"包中的http...
  • 为什么Go语言在中国格外的"火

    万次阅读 多人点赞 2019-07-19 08:47:22
    go语言推出有几年了,似乎不温不火。但是在中国范围内,确实被关注的一塌糊涂。这是2017年2月份TIOBE出的编程语言排名:在拉勾网上搜索go的职位,结果有119个(2017年2月14日搜索结果),似乎还没有那么火爆:但是在...
  • 安装Go语言及搭建Go语言开发环境

    万次阅读 2020-05-04 10:34:02
    文章目录1. UNIX是什么2. 了解UNIX的简要发展史3. GNU项目与自由软件4. Linux简介5. 登录和退出Linux(操作演示图解见linux系统管理P17-P22) 1. UNIX是什么 掌握UNIX的定义: UNIX是一个计算机操作系统,一个用来...

空空如也

1 2 3 4 5 ... 20
收藏数 291,202
精华内容 116,480
关键字:

go