图像处理曲线变换

2018-08-24 14:44:11 xuehuitanwan123 阅读数 4933

        对于数字图像处理而言,一般包含着空间域处理和变换域处理两种形式。空间域处理方法主要是直接以图像中的像素操作为基础,它主要分为灰度变换和空间滤波两类。灰度变换是在图像的单个像素上操作,主要以对比度和阈值处理为目的。空间域处理可由下式表示:

                                                                            g(x,y)=T[f(x,y)]

其中f(x,y)是输入图像,g(x,y)是处理后的图像,T是在点(x,y)的领域上定义的关于f的一种算子。

        为了保证经过灰度变换后的输出图像在整体的外貌上,或者更准确地说在形态学上,与输入图像保持一致,灰度变换函数必须是严格单调递增函数。在图像处理中,灰度变换主要应用于图像的对比度改善。在灰度变换中,最为常用的三类基本函数为线性函数(反转和恒等变换)、对数函数(对数和反对数变换)以及幂律函数(n次幂和n次根变换)。恒等函数是最一般的情况,其输出图像灰度等于输入图像灰度的变换。

1、图像反转

      图像反转的表达式:       s=L-1-r   。其中r表示处理前的灰度值,s表示处理后的灰度值。采取这种方式反转一副图像的灰度级,可得到等效的照片底片。特别适用于增强嵌入在一副图像的暗区域中的白色或者灰色细节,尤其是当黑色面积在尺寸上占主导地位时。

2、对数变换

      对数变换的通用形式为:

                                                                s=c log(1+r)

其中c是一个常数,并假设r≥0,其变换曲线如下图

                                 

对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,相反,对高的输入灰度值也是如此。也就是说,该变换扩展图像的低灰度范围,同时压缩图像的高灰度范围。

3、幂律变换

       幂律变换的基本表达式为:

                                                                             s=cr^{\gamma }

其中c和γ为正常数。其一般表达式的图像为:

         

对于γ<1,扩展低灰度范围,压缩高灰度范围;对于γ>1,压缩低灰度范围,扩展高灰度范围。

4、分段线性变换函数

       对比度拉伸是最简单的分段线性函数。其一般的函数图像为:

                          

 

                                                                   

       

2019-04-23 16:24:29 Eastmount 阅读数 19574

该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~

该系列在github所有源代码:https://github.com/eastmountyxz/ImageProcessing-Python
PS:请求帮忙点个Star,哈哈,第一次使用Github,以后会分享更多代码,一起加油。

同时推荐作者的C++图像系列知识:
[数字图像处理] 一.MFC详解显示BMP格式图片
[数字图像处理] 二.MFC单文档分割窗口显示图片
[数字图像处理] 三.MFC实现图像灰度、采样和量化功能详解
[数字图像处理] 四.MFC对话框绘制灰度直方图
[数字图像处理] 五.MFC图像点运算之灰度线性变化、灰度非线性变化、阈值化和均衡化处理详解
[数字图像处理] 六.MFC空间几何变换之图像平移、镜像、旋转、缩放详解
[数字图像处理] 七.MFC图像增强之图像普通平滑、高斯平滑、Laplacian、Sobel、Prewitt锐化详解

前文参考:
[Python图像处理] 一.图像处理基础知识及OpenCV入门函数
[Python图像处理] 二.OpenCV+Numpy库读取与修改像素
[Python图像处理] 三.获取图像属性、兴趣ROI区域及通道处理
[Python图像处理] 四.图像平滑之均值滤波、方框滤波、高斯滤波及中值滤波
[Python图像处理] 五.图像融合、加法运算及图像类型转换
[Python图像处理] 六.图像缩放、图像旋转、图像翻转与图像平移
[Python图像处理] 七.图像阈值化处理及算法对比
[Python图像处理] 八.图像腐蚀与图像膨胀
[Python图像处理] 九.形态学之图像开运算、闭运算、梯度运算
[Python图像处理] 十.形态学之图像顶帽运算和黑帽运算
[Python图像处理] 十一.灰度直方图概念及OpenCV绘制直方图
[Python图像处理] 十二.图像几何变换之图像仿射变换、图像透视变换和图像校正
[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽运算
[Python图像处理] 十四.基于OpenCV和像素处理的图像灰度化处理
[Python图像处理] 十五.图像的灰度线性变换
[Python图像处理] 十六.图像的灰度非线性变换之对数变换、伽马变换
[Python图像处理] 十七.图像锐化与边缘检测之Roberts算子、Prewitt算子、Sobel算子和Laplacian算子
[Python图像处理] 十八.图像锐化与边缘检测之Scharr算子、Canny算子和LOG算子
[Python图像处理] 十九.图像分割之基于K-Means聚类的区域分割
[Python图像处理] 二十.图像量化处理和采样处理及局部马赛克特效
[Python图像处理] 二十一.图像金字塔之图像向下取样和向上取样

前面一篇文章我讲解了Python图像量化、采样处理及图像金字塔。本文主要讲解图像傅里叶变换的相关内容,在数字图像处理中,有两个经典的变换被广泛应用——傅里叶变换和霍夫变换。其中,傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪、图像增强等处理。基础性文章,希望对你有所帮助。同时,该部分知识均为杨秀璋查阅资料撰写,转载请署名CSDN+杨秀璋及原地址出处,谢谢!!

1.图像傅里叶变换
2.Numpy实现傅里叶变换
3.Numpy实现傅里叶逆变换
4.OpenCV实现傅里叶变换
5.OpenCV实现傅里叶逆变换


PS:文章参考自己以前系列图像处理文章及OpenCV库函数,同时参考如下文献:
《数字图像处理》(第3版),冈萨雷斯著,阮秋琦译,电子工业出版社,2013年.
《数字图像处理学》(第3版),阮秋琦,电子工业出版社,2008年,北京.
《OpenCV3编程入门》,毛星云,冷雪飞,电子工业出版社,2015,北京.
百度百科-傅里叶变换
网易云课堂-高登教育 Python+OpenCV图像处理
安安zoe-图像的傅里叶变换
daduzimama-图像的傅里叶变换的迷思----频谱居中
tenderwx-数字图像处理-傅里叶变换在图像处理中的应用
小小猫钓小小鱼-深入浅出的讲解傅里叶变换(真正的通俗易懂)


一.图像傅里叶变换原理

傅里叶变换(Fourier Transform,简称FT)常用于数字信号处理,它的目的是将时间域上的信号转变为频率域上的信号。随着域的不同,对同一个事物的了解角度也随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。同时,可以从频域里发现一些原先不易察觉的特征。傅里叶定理指出“任何连续周期信号都可以表示成(或者无限逼近)一系列正弦信号的叠加。”

下面引用李老师 “Python+OpenCV图像处理” 中的一个案例,非常推荐同学们去购买学习。如下图所示,他将某饮料的制作过程的时域角度转换为频域角度。

绘制对应的时间图和频率图如下所示:

傅里叶公式如下,其中w表示频率,t表示时间,为复变函数。它将时间域的函数表示为频率域的函数f(t)的积分。

傅里叶变换认为一个周期函数(信号)包含多个频率分量,任意函数(信号)f(t)可通过多个周期函数(或基函数)相加合成。从物理角度理解,傅里叶变换是以一组特殊的函数(三角函数)为正交基,对原函数进行线性变换,物理意义便是原函数在各组基函数的投影。如下图所示,它是由三条正弦曲线组合成。

傅里叶变换可以应用于图像处理中,经过对图像进行变换得到其频谱图。从谱频图里频率高低来表征图像中灰度变化剧烈程度。图像中的边缘信号和噪声信号往往是高频信号,而图像变化频繁的图像轮廓及背景等信号往往是低频信号。这时可以有针对性的对图像进行相关操作,例如图像除噪、图像增强和锐化等。

二维图像的傅里叶变换可以用以下数学公式(15-3)表达,其中f是空间域(Spatial Domain))值,F是频域(Frequency Domain)值

对上面的傅里叶变换有了大致的了解之后,下面通过Numpy和OpenCV分别讲解图像傅里叶变换的算法及操作代码。


二.Numpy实现傅里叶变换

Numpy中的 FFT包提供了函数 np.fft.fft2()可以对信号进行快速傅里叶变换,其函数原型如下所示,该输出结果是一个复数数组(Complex Ndarry)。

fft2(a, s=None, axes=(-2, -1), norm=None)

  • a表示输入图像,阵列状的复杂数组
  • s表示整数序列,可以决定输出数组的大小。输出可选形状(每个转换轴的长度),其中s[0]表示轴0,s[1]表示轴1。对应fit(x,n)函数中的n,沿着每个轴,如果给定的形状小于输入形状,则将剪切输入。如果大于则输入将用零填充。如果未给定’s’,则使用沿’axles’指定的轴的输入形状
  • axes表示整数序列,用于计算FFT的可选轴。如果未给出,则使用最后两个轴。“axes”中的重复索引表示对该轴执行多次转换,一个元素序列意味着执行一维FFT
  • norm包括None和ortho两个选项,规范化模式(请参见numpy.fft)。默认值为无

Numpy中的fft模块有很多函数,相关函数如下:

#计算一维傅里叶变换
numpy.fft.fft(a, n=None, axis=-1, norm=None)
#计算二维的傅里叶变换
numpy.fft.fft2(a, n=None, axis=-1, norm=None)
#计算n维的傅里叶变换
numpy.fft.fftn()
#计算n维实数的傅里叶变换
numpy.fft.rfftn()
#返回傅里叶变换的采样频率
numpy.fft.fftfreq()
#将FFT输出中的直流分量移动到频谱中央
numpy.fft.shift()

下面的代码是通过Numpy库实现傅里叶变换,调用np.fft.fft2()快速傅里叶变换得到频率分布,接着调用np.fft.fftshift()函数将中心位置转移至中间,最终通过Matplotlib显示效果图。

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

#读取图像
img = cv.imread('test.png', 0)

#快速傅里叶变换算法得到频率分布
f = np.fft.fft2(img)

#默认结果中心点位置是在左上角,
#调用fftshift()函数转移到中间位置
fshift = np.fft.fftshift(f)       

#fft结果是复数, 其绝对值结果是振幅
fimg = np.log(np.abs(fshift))

#展示结果
plt.subplot(121), plt.imshow(img, 'gray'), plt.title('Original Fourier')
plt.axis('off')
plt.subplot(122), plt.imshow(fimg, 'gray'), plt.title('Fourier Fourier')
plt.axis('off')
plt.show()

输出结果如图15-2所示,左边为原始图像,右边为频率分布图谱,其中越靠近中心位置频率越低,越亮(灰度值越高)的位置代表该频率的信号振幅越大。


三.Numpy实现傅里叶逆变换

下面介绍Numpy实现傅里叶逆变换,它是傅里叶变换的逆操作,将频谱图像转换为原始图像的过程。通过傅里叶变换将转换为频谱图,并对高频(边界)和低频(细节)部分进行处理,接着需要通过傅里叶逆变换恢复为原始效果图。频域上对图像的处理会反映在逆变换图像上,从而更好地进行图像处理。

图像傅里叶变化主要使用的函数如下所示:

#实现图像逆傅里叶变换,返回一个复数数组
numpy.fft.ifft2(a, n=None, axis=-1, norm=None)
#fftshit()函数的逆函数,它将频谱图像的中心低频部分移动至左上角
numpy.fft.fftshift()
#将复数转换为0至255范围
iimg = numpy.abs(逆傅里叶变换结果)

下面的代码分别实现了傅里叶变换和傅里叶逆变换。

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

#读取图像
img = cv.imread('Lena.png', 0)

#傅里叶变换
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
res = np.log(np.abs(fshift))

#傅里叶逆变换
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)

#展示结果
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(132), plt.imshow(res, 'gray'), plt.title('Fourier Image')
plt.axis('off')
plt.subplot(133), plt.imshow(iimg, 'gray'), plt.title('Inverse Fourier Image')
plt.axis('off')
plt.show()

输出结果如图15-4所示,从左至右分别为原始图像、频谱图像、逆傅里叶变换转换图像。


四.OpenCV实现傅里叶变换

OpenCV 中相应的函数是cv2.dft()和用Numpy输出的结果一样,但是是双通道的。第一个通道是结果的实数部分,第二个通道是结果的虚数部分,并且输入图像要首先转换成 np.float32 格式。其函数原型如下所示:

dst = cv2.dft(src, dst=None, flags=None, nonzeroRows=None)

  • src表示输入图像,需要通过np.float32转换格式
  • dst表示输出图像,包括输出大小和尺寸
  • flags表示转换标记,其中DFT _INVERSE执行反向一维或二维转换,而不是默认的正向转换;DFT _SCALE表示缩放结果,由阵列元素的数量除以它;DFT _ROWS执行正向或反向变换输入矩阵的每个单独的行,该标志可以同时转换多个矢量,并可用于减少开销以执行3D和更高维度的转换等;DFT _COMPLEX_OUTPUT执行1D或2D实数组的正向转换,这是最快的选择,默认功能;DFT _REAL_OUTPUT执行一维或二维复数阵列的逆变换,结果通常是相同大小的复数数组,但如果输入数组具有共轭复数对称性,则输出为真实数组
  • nonzeroRows表示当参数不为零时,函数假定只有nonzeroRows输入数组的第一行(未设置)或者只有输出数组的第一个(设置)包含非零,因此函数可以处理其余的行更有效率,并节省一些时间;这种技术对计算阵列互相关或使用DFT卷积非常有用

注意,由于输出的频谱结果是一个复数,需要调用cv2.magnitude()函数将傅里叶变换的双通道结果转换为0到255的范围。其函数原型如下:

cv2.magnitude(x, y)

  • x表示浮点型X坐标值,即实部
  • y表示浮点型Y坐标值,即虚部
    最终输出结果为幅值,即:

完整代码如下所示:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from matplotlib import pyplot as plt

#读取图像
img = cv2.imread('Lena.png', 0)

#傅里叶变换
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)

#将频谱低频从左上角移动至中心位置
dft_shift = np.fft.fftshift(dft)

#频谱图像双通道复数转换为0-255区间
result = 20*np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))

#显示图像
plt.subplot(121), plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(result, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

输出结果如图15-5所示,左边为原始“Lena”图,右边为转换后的频谱图像,并且保证低频位于中心位置。


五.OpenCV实现傅里叶逆变换

在OpenCV 中,通过函数cv2.idft()实现傅里叶逆变换,其返回结果取决于原始图像的类型和大小,原始图像可以为实数或复数。其函数原型如下所示:

dst = cv2.idft(src[, dst[, flags[, nonzeroRows]]])

  • src表示输入图像,包括实数或复数
  • dst表示输出图像
  • flags表示转换标记
  • nonzeroRows表示要处理的dst行数,其余行的内容未定义(请参阅dft描述中的卷积示例)

完整代码如下所示:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from matplotlib import pyplot as plt

#读取图像
img = cv2.imread('Lena.png', 0)

#傅里叶变换
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
dftshift = np.fft.fftshift(dft)
res1= 20*np.log(cv2.magnitude(dftshift[:,:,0], dftshift[:,:,1]))

#傅里叶逆变换
ishift = np.fft.ifftshift(dftshift)
iimg = cv2.idft(ishift)
res2 = cv2.magnitude(iimg[:,:,0], iimg[:,:,1])

#显示图像
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(132), plt.imshow(res1, 'gray'), plt.title('Fourier Image')
plt.axis('off')
plt.subplot(133), plt.imshow(res2, 'gray'), plt.title('Inverse Fourier Image')
plt.axis('off')
plt.show()

输出结果如图15-6所示,第一幅图为原始“Lena”图,第二幅图为傅里叶变换后的频谱图像,第三幅图为傅里叶逆变换,频谱图像转换为原始图像的过程。


六.总结

傅里叶变换的目的并不是为了观察图像的频率分布(至少不是最终目的),更多情况下是为了对频率进行过滤,通过修改频率以达到图像增强、图像去噪、边缘检测、特征提取、压缩加密等目的。下一篇文章,作者将结合傅里叶变换和傅里叶逆变换讲解它的应用。

时也,命也。
英语低分数线一分,些许遗憾,但不气馁,更加努力。雄关漫道真如铁,而今迈过从头越,从头越。苍山如海,残阳如血。感谢一路陪伴的人和自己。

无论成败,那段拼搏的日子都很美。结果只会让我更加努力,学好英语。下半年沉下心来好好做科研写文章,西藏之行,课程分享。同时,明天的博士考试加油,虽然裸泳,但也加油!还有春季招考开始准备。

最后补充马刺小石匠精神,当一切都看起来无济于事的时候,我去看一个石匠敲石头.他一连敲了100次,石头仍然纹丝不动。但他敲第101次的时候,石头裂为两半。可我知道,让石头裂开的不是那最后一击,而是前面的一百次敲击的结果。人生路漫漫,不可能一路一帆风顺,暂时的不顺只是磨练自己的必经之路,夜最深的时候也是距黎明最近的时刻,经历过漫漫长夜的打磨,你自身会更加强大。

最后希望这篇基础性文章对您有所帮助,如果有错误或不足之处,请海涵!

(By:Eastmount 2019-04-23 周二下午6点写于花溪 https://blog.csdn.net/Eastmount )

2012-07-07 14:42:21 jia20003 阅读数 109494

图像处理之霍夫变换(直线检测算法)

霍夫变换是图像变换中的经典手段之一,主要用来从图像中分离出具有某种相同特征的几何

形状(如,直线,圆等)。霍夫变换寻找直线与圆的方法相比与其它方法可以更好的减少噪

声干扰。经典的霍夫变换常用来检测直线,圆,椭圆等。

 

霍夫变换算法思想:

以直线检测为例,每个像素坐标点经过变换都变成都直线特质有贡献的统一度量,一个简单

的例子如下:一条直线在图像中是一系列离散点的集合,通过一个直线的离散极坐标公式,

可以表达出直线的离散点几何等式如下:

X *cos(theta) + y * sin(theta)  = r 其中角度theta指r与X轴之间的夹角,r为到直线几何垂

直距离。任何在直线上点,x, y都可以表达,其中 r, theta是常量。该公式图形表示如下:

然而在实现的图像处理领域,图像的像素坐标P(x, y)是已知的,而r, theta则是我们要寻找

的变量。如果我们能绘制每个(r, theta)值根据像素点坐标P(x, y)值的话,那么就从图像笛卡

尔坐标系统转换到极坐标霍夫空间系统,这种从点到曲线的变换称为直线的霍夫变换。变换

通过量化霍夫参数空间为有限个值间隔等分或者累加格子。当霍夫变换算法开始,每个像素

坐标点P(x, y)被转换到(r, theta)的曲线点上面,累加到对应的格子数据点,当一个波峰出现

时候,说明有直线存在。同样的原理,我们可以用来检测圆,只是对于圆的参数方程变为如

下等式:

(x –a ) ^2 + (y-b) ^ 2 = r^2其中(a, b)为圆的中心点坐标,r圆的半径。这样霍夫的参数空间就

变成一个三维参数空间。给定圆半径转为二维霍夫参数空间,变换相对简单,也比较常用。

 

编程思路解析:

1.      读取一幅带处理二值图像,最好背景为黑色。

2.      取得源像素数据

3.      根据直线的霍夫变换公式完成霍夫变换,预览霍夫空间结果

4.       寻找最大霍夫值,设置阈值,反变换到图像RGB值空间(程序难点之一)

5.      越界处理,显示霍夫变换处理以后的图像

 

关键代码解析:

直线的变换角度为[0 ~ PI]之间,设置等份为500为PI/500,同时根据参数直线参数方程的取值

范围为[-r, r]有如下霍夫参数定义:

 // prepare for hough transform
 int centerX = width / 2;
 int centerY = height / 2;
 double hough_interval = PI_VALUE/(double)hough_space;
	    
 int max = Math.max(width, height);
 int max_length = (int)(Math.sqrt(2.0D) * max);
 hough_1d = new int[2 * hough_space * max_length];

实现从像素RGB空间到霍夫空间变换的代码为:

// start hough transform now....
int[][] image_2d = convert1Dto2D(inPixels);
for (int row = 0; row < height; row++) {
	for (int col = 0; col < width; col++) {
    	int p = image_2d[row][col] & 0xff;
    	if(p == 0) continue; // which means background color
    	
    	// since we does not know the theta angle and r value, 
    	// we have to calculate all hough space for each pixel point
    	// then we got the max possible theta and r pair.
    	// r = x * cos(theta) + y * sin(theta)
    	for(int cell=0; cell < hough_space; cell++ ) {
    		max = (int)((col - centerX) * Math.cos(cell * hough_interval) + (row - centerY) * Math.sin(cell * hough_interval));
    		max += max_length; // start from zero, not (-max_length)
    		if (max < 0 || (max >= 2 * max_length)) {// make sure r did not out of scope[0, 2*max_lenght]
                continue;
            }
    		hough_2d[cell][max] +=1;
    	}
    }
}

寻找最大霍夫值计算霍夫阈值的代码如下:

// find the max hough value
int max_hough = 0;
for(int i=0; i<hough_space; i++) {
	for(int j=0; j<2*max_length; j++) {
		hough_1d[(i + j * hough_space)] = hough_2d[i][j];
		if(hough_2d[i][j] > max_hough) {
			max_hough = hough_2d[i][j];
		}
	}
}
System.out.println("MAX HOUGH VALUE = " + max_hough);

// transfer back to image pixels space from hough parameter space
int hough_threshold = (int)(threshold * max_hough);

从霍夫空间反变换回像素数据空间代码如下:

	    // transfer back to image pixels space from hough parameter space
	    int hough_threshold = (int)(threshold * max_hough);
	    for(int row = 0; row < hough_space; row++) {
	    	for(int col = 0; col < 2*max_length; col++) {
	    		if(hough_2d[row][col] < hough_threshold) // discard it
	    			continue;
	    		int hough_value = hough_2d[row][col];
	    		boolean isLine = true;
	    		for(int i=-1; i<2; i++) {
	    			for(int j=-1; j<2; j++) {
	    				if(i != 0 || j != 0) {
    		              int yf = row + i;
    		              int xf = col + j;
    		              if(xf < 0) continue;
    		              if(xf < 2*max_length) {
    		            	  if (yf < 0) {
    		            		  yf += hough_space;
    		            	  }
    		                  if (yf >= hough_space) {
    		                	  yf -= hough_space;
    		                  }
    		                  if(hough_2d[yf][xf] <= hough_value) {
    		                	  continue;
    		                  }
    		                  isLine = false;
    		                  break;
    		              }
	    				}
	    			}
	    		}
	    		if(!isLine) continue;
	    		
	    		// transform back to pixel data now...
	            double dy = Math.sin(row * hough_interval);
	            double dx = Math.cos(row * hough_interval);
	            if ((row <= hough_space / 4) || (row >= 3 * hough_space / 4)) {
	                for (int subrow = 0; subrow < height; ++subrow) {
	                  int subcol = (int)((col - max_length - ((subrow - centerY) * dy)) / dx) + centerX;
	                  if ((subcol < width) && (subcol >= 0)) {
	                	  image_2d[subrow][subcol] = -16776961;
	                  }
	                }
	              } else {
	                for (int subcol = 0; subcol < width; ++subcol) {
	                  int subrow = (int)((col - max_length - ((subcol - centerX) * dx)) / dy) + centerY;
	                  if ((subrow < height) && (subrow >= 0)) {
	                	  image_2d[subrow][subcol] = -16776961;
	                  }
	                }
	              }
	    	}
	    }
霍夫变换源图如下:

霍夫变换以后,在霍夫空间显示如下:(白色表示已经找到直线信号)


最终反变换回到像素空间效果如下:


一个更好的运行监测直线的结果(输入为二值图像):


完整的霍夫变换源代码如下:

package com.gloomyfish.image.transform;

import java.awt.image.BufferedImage;

import com.process.blur.study.AbstractBufferedImageOp;

public class HoughLineFilter extends AbstractBufferedImageOp {
	public final static double PI_VALUE = Math.PI;
	private int hough_space = 500;
	private int[] hough_1d;
	private int[][] hough_2d;
	private int width;
	private int height;
	
	private float threshold;
	private float scale;
	private float offset;
	
	public HoughLineFilter() {
		// default hough transform parameters
		//	scale = 1.0f;
		//	offset = 0.0f;
		threshold = 0.5f;
		scale = 1.0f;
		offset = 0.0f;
	}
	
	public void setHoughSpace(int space) {
		this.hough_space = space;
	}
	
	public float getThreshold() {
		return threshold;
	}

	public void setThreshold(float threshold) {
		this.threshold = threshold;
	}

	public float getScale() {
		return scale;
	}

	public void setScale(float scale) {
		this.scale = scale;
	}

	public float getOffset() {
		return offset;
	}

	public void setOffset(float offset) {
		this.offset = offset;
	}

	@Override
	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
		width = src.getWidth();
        height = src.getHeight();

        if ( dest == null )
            dest = createCompatibleDestImage( src, null );

        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        getRGB( src, 0, 0, width, height, inPixels );
        houghTransform(inPixels, outPixels);
        setRGB( dest, 0, 0, width, height, outPixels );
        return dest;
	}

	private void houghTransform(int[] inPixels, int[] outPixels) {
        // prepare for hough transform
	    int centerX = width / 2;
	    int centerY = height / 2;
	    double hough_interval = PI_VALUE/(double)hough_space;
	    
	    int max = Math.max(width, height);
	    int max_length = (int)(Math.sqrt(2.0D) * max);
	    hough_1d = new int[2 * hough_space * max_length];
	    
	    // define temp hough 2D array and initialize the hough 2D
	    hough_2d = new int[hough_space][2*max_length];
	    for(int i=0; i<hough_space; i++) {
	    	for(int j=0; j<2*max_length; j++) {
	    		hough_2d[i][j] = 0;
	    	}
	    }
	    
	    // start hough transform now....
	    int[][] image_2d = convert1Dto2D(inPixels);
	    for (int row = 0; row < height; row++) {
	    	for (int col = 0; col < width; col++) {
	        	int p = image_2d[row][col] & 0xff;
	        	if(p == 0) continue; // which means background color
	        	
	        	// since we does not know the theta angle and r value, 
	        	// we have to calculate all hough space for each pixel point
	        	// then we got the max possible theta and r pair.
	        	// r = x * cos(theta) + y * sin(theta)
	        	for(int cell=0; cell < hough_space; cell++ ) {
	        		max = (int)((col - centerX) * Math.cos(cell * hough_interval) + (row - centerY) * Math.sin(cell * hough_interval));
	        		max += max_length; // start from zero, not (-max_length)
	        		if (max < 0 || (max >= 2 * max_length)) {// make sure r did not out of scope[0, 2*max_lenght]
	                    continue;
	                }
	        		hough_2d[cell][max] +=1;
	        	}
	        }
	    }
	    
		// find the max hough value
		int max_hough = 0;
		for(int i=0; i<hough_space; i++) {
			for(int j=0; j<2*max_length; j++) {
				hough_1d[(i + j * hough_space)] = hough_2d[i][j];
				if(hough_2d[i][j] > max_hough) {
					max_hough = hough_2d[i][j];
				}
			}
		}
		System.out.println("MAX HOUGH VALUE = " + max_hough);
		
		// transfer back to image pixels space from hough parameter space
		int hough_threshold = (int)(threshold * max_hough);
	    for(int row = 0; row < hough_space; row++) {
	    	for(int col = 0; col < 2*max_length; col++) {
	    		if(hough_2d[row][col] < hough_threshold) // discard it
	    			continue;
	    		int hough_value = hough_2d[row][col];
	    		boolean isLine = true;
	    		for(int i=-1; i<2; i++) {
	    			for(int j=-1; j<2; j++) {
	    				if(i != 0 || j != 0) {
    		              int yf = row + i;
    		              int xf = col + j;
    		              if(xf < 0) continue;
    		              if(xf < 2*max_length) {
    		            	  if (yf < 0) {
    		            		  yf += hough_space;
    		            	  }
    		                  if (yf >= hough_space) {
    		                	  yf -= hough_space;
    		                  }
    		                  if(hough_2d[yf][xf] <= hough_value) {
    		                	  continue;
    		                  }
    		                  isLine = false;
    		                  break;
    		              }
	    				}
	    			}
	    		}
	    		if(!isLine) continue;
	    		
	    		// transform back to pixel data now...
	            double dy = Math.sin(row * hough_interval);
	            double dx = Math.cos(row * hough_interval);
	            if ((row <= hough_space / 4) || (row >= 3 * hough_space / 4)) {
	                for (int subrow = 0; subrow < height; ++subrow) {
	                  int subcol = (int)((col - max_length - ((subrow - centerY) * dy)) / dx) + centerX;
	                  if ((subcol < width) && (subcol >= 0)) {
	                	  image_2d[subrow][subcol] = -16776961;
	                  }
	                }
	              } else {
	                for (int subcol = 0; subcol < width; ++subcol) {
	                  int subrow = (int)((col - max_length - ((subcol - centerX) * dx)) / dy) + centerY;
	                  if ((subrow < height) && (subrow >= 0)) {
	                	  image_2d[subrow][subcol] = -16776961;
	                  }
	                }
	              }
	    	}
	    }
	    
	    // convert to hough 1D and return result
	    for (int i = 0; i < this.hough_1d.length; i++)
	    {
	      int value = clamp((int)(scale * this.hough_1d[i] + offset)); // scale always equals 1
	      this.hough_1d[i] = (0xFF000000 | value + (value << 16) + (value << 8));
	    }
	    
	    // convert to image 1D and return
	    for (int row = 0; row < height; row++) {
	    	for (int col = 0; col < width; col++) {
	        	outPixels[(col + row * width)] = image_2d[row][col];
	        }
	    }
	}
	
	public BufferedImage getHoughImage() {
		BufferedImage houghImage = new BufferedImage(hough_2d[0].length, hough_space, BufferedImage.TYPE_4BYTE_ABGR);
		setRGB(houghImage, 0, 0, hough_2d[0].length, hough_space, hough_1d);
		return houghImage;
	}
	
	public static int clamp(int value) {
	      if (value < 0)
	    	  value = 0;
	      else if (value > 255) {
	    	  value = 255;
	      }
	      return value;
	}
	
	private int[][] convert1Dto2D(int[] pixels) {
		int[][] image_2d = new int[height][width];
		int index = 0;
		for(int row = 0; row < height; row++) {
			for(int col = 0; col < width; col++) {
				index = row * width + col;
				image_2d[row][col] = pixels[index];
			}
		}
		return image_2d;
	}

}
转载文章请务必注明出自本博客!!

学习图像处理,点击视频教程《数字图像处理-基础入门》




2016-06-05 11:02:22 sinat_34035510 阅读数 7716

霍夫(HOUGH)变换

        霍夫变换是图像处理中用来从图像中分离出具有某种相同特征的几何形状(通常,直线,圆等)的常用方法。经典的霍夫变换常用来检测直线,圆,椭圆等。

为什么要进行霍夫变换,当然是为了实现某种目的,比如检测,(废话)。它是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法。在预先知道区域形状的条件下,利用霍夫变换可以方便地得到边界曲线而将不连续的边缘像素点连接起来。

霍夫变换的主要优点是受噪声和曲线间断的影响小。利用霍夫变换还可以直接检测某些已知形状的目标

霍夫变换的基本思想是点 —— 线的对偶性(duality),当然这只不过是所有人都这样说了,所谓线的对偶性就是线与线的某种变换之后的对应或者映射关系,实际上霍夫变换是直角坐标系空间线与变换域空间的线的映射关系,考虑傅里叶变换?当然就是说变换的目的就是便于分析。具体原理如下:

     在图像空间XY里,所有过点(x,y)的直线都满足方程:

                         y = px + q    

它也可写成:q = -px + y可以认为是参数空间PQ中过点(p’, q’)的一条直线。在图像空间中共线的点对应在参数空间里相交的线。



在图像空间中共线的点对应在参数空间里相交的线.反过来,在参数空间中相交于同一个点的所有直线在图像空间里都有共线的点与之对应。这就是点——线的对偶性。当然一般选取变换空间是时用的是极坐标空间(为什么?因为图像空间中垂直的直线p趋近于无穷!),霍夫变换根据这些关系把在图像空间中的检测问题转换到参数空间里,通过在参数空间里进行简单的累加统计完成检测任务在具体计算时,需要在参数空间PQ里建一个2-D的累加数组。设这个累加数组为A(p, q),如图所示,其中[pmin, pmax]和[qmin, qmax] 分别为预期的斜率和截距的取值范围。开始时置数组A为零,然后对每一个图像空间中的给定点,让p取遍P轴上所有可能的值,并根据式q = -px + y算出对应的q。再根据p和q的值(设都已经取整)对A累加:A(p, q)=A(p, q)+1。  累加结束后,根据A(p,q)的值就可知道有多少点是共线的,即A(p, q) 的值就是在(p, q) 处共线点的个数。同时(p, q) 值也给出了直线方程的参数,使我们得到了点所在的线。


具体实现步骤:

1)、构造一个P、Q空间的二维累加数组A(p,q)

2)、从f(x,y)的指定区域中取(xi,yi),按方程q=-pxi+yi在[pmin,pmax]中遍取可能的p值计算得到可能的q值。

3)、在对应的位置计算A(p,q) =A(p,q)+1

4)、重复2)、3)直到将从f(x,y)的指定区域中的所有点取完。此时,A(p,q)数组中最大值所对应的p,q就是方程y=px+q中的p、q值。

5)、根据y=px+q绘出f(x,y)中的直线

区域的选择:来自确认存在直线的区域。

坐标的选择:来自对存在的直线参数的估测。

霍夫变换不仅可用来检测直线和连接处在同一条直线上的点,也可以用来检测满足解析式f(x, c)=0形式的各类曲线,并把曲线上的点连接起来,这里x是一个坐标矢量,在2-D图像中是一个2-D矢量,c是一个系数矢量,它可以根据曲线的不同从2-D到3-D,4-D,…。换句话说,对写得出方程的图形都可利用霍夫变换检测

        例如圆周的检测。圆的一般方程是:

               (x - a)^2 + (y - b) ^2 = r^2

       式中有3个参数a,b, r,所以需要在参数空间里建立一个3-D的累加数组A,其元素可写为A(a, b, r) 。我们可让a和b依次变化而根据上式算出r,并对A累加:A(a, b, r) = A(a, b, r) + 1。所以其原理与检测直线上的点相同,只是复杂性增加了。

       从理论上来说,计算量和累加器尺寸随参数个数的增加是指数增加的,所以实际中霍夫变换最适合于检测较简单(即其解析表达式只含有较少参数)曲线上的点。

       设圆的半径r为已知,问题转化到2-D参数空间,如下图。原来参数的轨迹为整个圆锥部分表面,如果r已知,则参数的轨迹是半径为r的圆周。这里图像空间中的边界和参数空间里的轨迹都是圆周,所以这里是圆周——圆周对偶性。


至于代码,在MATLAB工具箱中本身集成了hough变换的函数,SO。。。。就不贴了

2016-12-10 11:00:19 rongfzh1990 阅读数 9034

Gamma变换: y=x^gamma;
gamma>1, 较亮的区域灰度被拉伸,较暗的区域灰度被压缩的更暗,图像整体变暗;
gamma<1, 较亮的区域灰度被压缩,较暗的区域灰度被拉伸的较亮,图像整体变亮;
参考:
http://blog.csdn.net/lxy201700/article/details/24929013

#include<iostream>
#include<highgui\highgui.hpp>
#include<core/core.hpp>  
#include<math.h>
using namespace cv;  
using namespace std;  
// get Gamma transformation look up table
void GetGammaTransLUT(uchar *pLUT, float Gamma, int iLUTLen)
{
    for(int i=0;i<iLUTLen;i++)
    {
        pLUT[i]=(uchar)(pow((float)i/255.0,Gamma)*255);
    }
}
void GammaTrans(uchar *pSrc, uchar *pDst, const int iHeight,
                const int iWidth, float Gamma)
{
    uchar *pLUT=new uchar[256];
    GetGammaTransLUT(pLUT,Gamma,256);
    for(int i=0;i<iHeight*iWidth;i++)
    {
        pDst[i]=(uchar)pLUT[pSrc[i]];
    }
    delete []pLUT;
}
int main()
{
    Mat image=imread("C:\\迅雷下载\\图像处理\\Projects\\MyOpenCV\\MyOpenCV\\DIP3ECH06\\Fig0638(a)(lenna_RGB).tif",0); 
    Mat image_Dst=imread("C:\\迅雷下载\\图像处理\\Projects\\MyOpenCV\\MyOpenCV\\DIP3ECH06\\Fig0648(b)(lenna-noise-G-gauss-mean0-var800).tif",0); 
    const int iHeight=image.rows;
    const int iWidth=image.cols;
    uchar* pSrc=image.data;//new uchar[iHeight*iWidth];
    uchar* pDst=image_Dst.data;//new uchar[iHeight*iWidth];
    GammaTrans(pSrc,pDst,iHeight,iWidth,2);
    //namedWindow("Origin",1);
    imshow("Origin",image);
    //创建一个名字为“Lena”的图像显示窗口,(不提前声明也可以)  
    //namedWindow("Gamma Trans",1);  
    //显示图像  
    imshow("Gamma Trans",image_Dst);  
    //等待按键  
    waitKey();  
    return 0;  
}

这里写图片描述