精华内容
参与话题
问答
  • 一、高斯公式 参考文章:图像处理 高斯滤波(带权值的均值滤波) 1、一维高斯滤波。 a表示得到曲线的高度,u是指曲线在x轴的中心,σ指width(与半峰全宽有关,即平方差)。 2、二维高斯滤波。 二、泰勒...

    一、高斯公式

    参考文章:图像处理 高斯滤波(带权值的均值滤波)

    1、一维高斯滤波。

             \LARGE f(x)=\frac{1}{\sqrt{2\pi }\sigma }e^\frac{-(x-u)^2}{2\sigma^2 }

            a表示得到曲线的高度,u是指曲线在x轴的中心, σ指width(与半峰全宽有关,即平方差)。

    2、二维高斯滤波。

             \LARGE f(x,y)=\frac{1}{2\pi \sigma ^2}e^\frac{-(x^2+y^2)}{2\sigma ^2}

     

    二、泰勒公式 

    1、泰勒公式介绍。

            泰勒公式:\LARGE f(x)=\sum_{n=0}^{N}\frac{f^{(n)}(a)}{n!}(x-a)^n+R_{n}(x)

            设n是一个正整数。如果定义在一个包含aa的区间上的函数f在a点处n+1次可导,那么对于这个区间上的任意x都可以用泰勒公式来表示。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。  

    2、拉格朗日中值定理。

            曲线在A,B间至少存在1点,使得该曲线在P点的切线与割线AB平行。对于曲线运动在任意一个运动过程中至少存在一个位置或一个时刻的瞬时速率等于这个过程中的平均速率。如果函数f(x)满足,在[a,b]上连续,在(a,b)上可导,那么至少有一点θ(a<x<b)使等式\LARGE f(x)=\frac{f(a)-f(b)}{a-b}成立。 

     

    三、麦克劳伦公式

    1、麦克劳伦公式介绍。

            麦克劳伦公式:\LARGE f(x)=\sum_{n=0}^{N}\frac{f^{(n)}(0)}{n!}(x)^n+R_{n}(x)

            泰勒公式中当a=0的时候,就是麦克劳伦公式。

     

    2、例子。

    1)、\LARGE e^x

            因为\LARGE e^x的导数还是 \LARGE e^x,而且\LARGE e^0=1

            所以\LARGE e^x=1+\frac{x^1}{1!}+\frac{x^2}{2!} ...... +\frac{x^n}{n!}

           

    2)、sinx:

            因为sin0 = 0。

                   sin'x = cosx,sin'0 = cos0 = 1。

                   sin''x = cos'x = -sinx,sin''0 = -sin0 = 0。

                   sin'''x = cos''x = -sin'x=-cosx,sin'''0 = -cos0 = -1。

                   sin''''x = cos'''x = -sin''x = -cos'x = sinx,sin'''0 = sin0 = 0。

           所以\LARGE sinx=\frac{x^1}{1!}-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}......+\frac{(-1)^{n+1}x^{2n-1}}{(2n-1)!}

    3)、cosx:

            因为cos0=1

                   cos'x=-sinx,cos'0=sin0=0。

                   cos''x=-sin'x=-cosx,cos''0=-cos0=-1。

                   cos'''x=-sin''x=-cos'x=sinx,cos'''0=sin0=0。

                   cos''''x=-sin'''x=-cos''x=sin'x=cosx,cos''''0=cos0=1。

            所以\LARGE cosx=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!}......+\frac{(-1)^{n}x^{2n}}{(2n)!}

     

    四、欧拉公式

    因为:

    e^x=1+\frac{x^1}{1!}+\frac{x^2}{2!} ...... +\frac{x^n}{n!}

    sinx=\frac{x^1}{1!}-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}......+\frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!}cosx=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!}......+\frac{(-1)^{n}x^{2n}}{(2n)!}

    所以:

    \tiny sinx+cosx=1+\frac{x^1}{1!}-\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}+\frac{x^5}{5!}-\frac{x^6}{6!}-\frac{x^7}{7!}......+\frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!}+\frac{(-1)^{n}x^{2n}}{(2n)!}

    e^{xi}=1+\frac{i^1x^1}{1!}+\frac{i^2x^2}{2!}+\frac{i^3x^3}{3!}+\frac{i^4x^4}{4!}......\frac{i^nx^n}{n!}=sinx+cosx,其中i是虚数,即i的平方为-1。

     

    得出欧拉公式:e^{xi}=cosx+(sinx)i

     

    五、傅里叶公式

    参考文章:一维离散傅里叶变换二维离散傅里叶变换一维快速傅里叶变换二维离散傅里叶变换(代码和性能的优化)

    1、傅里叶变换。

            傅立叶变换,也可以看作是泰勒公式的一种。表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。时域和频域有关联:连续对非周期,离散对周期。

    原始信号 傅里叶方法 时域 频域
    非周期性连续信号 (连续)傅立叶变换(FT) 连续、非周期 连续、非周期
    周期性连续信号 傅立叶级数(FS)  连续、周期 离散、非周期
    非周期性离散信号 离散时域傅立叶变换(DTFT) 离散、非周期 连续、周期
    周期性离散信号 离散傅立叶变换(DFT)  离散、周期 离散、周期

    2、一维离散傅里叶变换DFT。

    公式:F(u)=\sum_{x=0}^{N-1}f(x)e^{-\frac{2\pi ux}{N}i},其中i是虚数。

    一维DFT公式中的 -\frac{2\pi ux}{N} 就是欧拉公式中的x,而且cos(-x)=cosx,sin(-x)=-sinx。

    所以一维DFT公式又可以写成:F(u)=\sum_{x=0}^{N-1}f(x)[cos \frac{2\pi ux}{N}-sin \frac{2\pi ux}{N}i]

     

    3、一维离散傅里叶逆变换IDFT。

    公式:f(x)=\frac{1}{N}\sum_{u=0}^{N-1}F(u)e^{\frac{2\pi ux}{N}i}

    又可以写成: f(x)=\frac{1}{N}\sum_{u=0}^{N-1}F(u)[cos \frac{2\pi ux}{N}+sin \frac{2\pi ux}{N}i]

     

    4、二维离散傅里叶变换DFT。

    公式:F(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-2\pi (\frac{ux}{M}+\frac{vy}{N})i}

    又可以写成:F(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)[cos(2\pi (\frac{ux}{M}+\frac{vy}{N})) -sin(2\pi (\frac{ux}{M}+\frac{vy}{N}))i ]

     

    5、二维离散傅里叶逆变换IDFT。

    公式:f(x,y)=\frac{1}{N+M}\sum_{u=0}^{N-1}\sum_{v=0}^{N-1}F(u,v)e^{2\pi (\frac{ux}{M}+\frac{vy}{N})i}

    又可以写成:F(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)[cos(2\pi (\frac{ux}{M}+\frac{vy}{N}))+sin(2\pi (\frac{ux}{M}+\frac{vy}{N}))i ]

     

    6、一维傅里叶快速变换FFT。

        1)FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法,即利用计算机计算离散傅里叶变换(DFT)的高效、快速计算方法的统称。快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的。采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。即为快速傅氏变换。它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。

    \dpi{120} \begin{bmatrix}F(0)\\F(1)\\ F(2)\\ \vdots\\ F(N-1) \end{bmatrix} =\begin{bmatrix} 1&1&1&\cdots &1\\ 1&W_{N}^1&W_{N}^2&\cdots &W_{N}^{(N-1)}\\ 1&W_{N}^2&W_{N}^4&\cdots &W_{N}^{2(N-1)}\\ \vdots&\vdots&\vdots&\vdots &\vdots\\ 1&W_{N}^{(N-1)}&W_{N}^{2(N-1)}&\cdots &W_{N}^{(N-1)(N-1)}\\ \end{bmatrix} + \begin{bmatrix}f(0)\\f(1)\\ f(2)\\ \vdots\\ f(N-1) \end{bmatrix}

        2)因为根据欧拉公式e^{\theta i}=cos \theta +(sin \theta )i和一维离散傅里叶公式,可以将欧拉公式中的\theta看作是\frac{2\pi }{N}k,而且可以是要将其代入到cos和sin函数中,所以其实可以看作是一个半径为1的圆。而W_{N}^k可以看作将圆分成N份,即上面那个矩阵中的\frac{2\pi }{N}k,而第k份的那个点就是那个值。

        3)可以推导出关系。

                   周期性:W_{N}^{k+nN}=W_{N}^k+W_{N}^{nN}=W_{N}^k  ,        W_{nN}^{nk}=W_{N}^k         

                   原点对称:W_{N}^{k+\frac{N}{2}}=W_{N}^k+W_{N}^{\frac{N}{2}}=W_{N}^ke^{-j\frac{2\pi }{N}\frac{N}{2}}=W_{N}^ke^{-j\pi}=W_{N}^k(cos\pi-sin\pi)=-W_{N}^k

        4)要让DFT的长度等于2的n次幂,其中n是正整数。

            \tiny F(k)=\sum_{x=0}^{\frac{N}{2}-1}f(2x)W_{N}^{(2x)k}+\sum_{x=0}^{\frac{N}{2}-1}f(2x+1)W_{N}^{(2x+1)k}=\sum_{x=0}^{\frac{N}{2}-1}f(2x)W_{N}^{(2x)k}+W_{N}^{k}\sum_{x=0}^{\frac{N}{2}-1}f(2x+1)W_{N}^{(2x)k}

            令 G(k)=\sum_{x=0}^{\frac{N}{2}-1}f(2x)W_{N}^{(2x)k}P(k)=\sum_{x=0}^{\frac{N}{2}-1}f(2x+1)W_{N}^{(2x)k}

    F(k)=G(k)+W_{N}^{k}P(k)

            但是这里的k是小于\frac{N}{2}的,但是可以推导出F(k+\frac{N}{2})=G(k+\frac{N}{2})+W_{N}^{k+\frac{N}{2}}P(k+\frac{N}{2})=F(x)=G(x)-W_{N}^kP(x)  ,  其中x=k+\frac{N}{2}

        5)最后将G(x),P(x)按照这个方式,用分治法不停的拆分出来,剩下最后俩个\begin{bmatrix}F(0)\\F(1) \end{bmatrix}= \begin{bmatrix}1&1\\1&W_{2}^1\end{bmatrix}* \begin{bmatrix}f(0)\\f(1) \end{bmatrix}= \begin{bmatrix}1&1\\1&-1\end{bmatrix}* \begin{bmatrix}f(0)\\f(1) \end{bmatrix}= \begin{bmatrix}f(0)+f(1)\\f(0)-f(1)\end{bmatrix} ,然后返回计算的结果。

     

    7、一维逆傅里叶快速变换IFFT。

            \dpi{120} \frac{1}{N}\begin{bmatrix}f(0)\\f(1)\\ f(2)\\ \vdots\\ f(N-1) \end{bmatrix} =\begin{bmatrix} 1&1&1&\cdots &1\\ 1&W_{N}^1&W_{N}^2&\cdots &W_{N}^{(N-1)}\\ 1&W_{N}^2&W_{N}^4&\cdots &W_{N}^{2(N-1)}\\ \vdots&\vdots&\vdots&\vdots &\vdots\\ 1&W_{N}^{(N-1)}&W_{N}^{2(N-1)}&\cdots &W_{N}^{(N-1)(N-1)}\\ \end{bmatrix} + \begin{bmatrix}F(0)\\F(1)\\ F(2)\\ \vdots\\ F(N-1) \end{bmatrix}

    比较DFT和IDFT公式,会发现逆变换和正变换的区别在于:

            1、e^{\theta i}中的\theta正负的区别。

            2、逆变换在结束之后,每个值都要除以原数组的大小。

    所以我们只要套用FFT的算法就可以了,将F(k)作为输入数组,输出f(x)作为输出数组,将因子W_{N}^{k}改为W_{N}^{-k},最后将f(x)全部除以N就可以了。

    \tiny f(k)=\sum_{x=0}^{\frac{N}{2}-1}F(2x)W_{N}^{(2x)k}+\sum_{x=0}^{\frac{N}{2}-1}F(2x+1)W_{N}^{(2x+1)k}=\sum_{x=0}^{\frac{N}{2}-1}F(2x)W_{N}^{(2x)k}+W_{N}^{k}\sum_{x=0}^{\frac{N}{2}-1}F(2x+1)W_{N}^{(2x)k}

    f(k+\frac{N}{2})=G(k+\frac{N}{2})+W_{N}^{k+\frac{N}{2}}P(k+\frac{N}{2})=f(x)=G(x)-W_{N}^kP(x)

    展开全文
  • 欧拉公式ejwtIn this post we will explore Euler’s Formula, explain what it is, where it comes from, and reveal its magic properties. 在这篇文章中,我们将探索欧拉公式,解释其含义,来源以及揭示其神奇的...

    欧拉公式ejwt

    In this post we will explore Euler’s Formula, explain what it is, where it comes from, and reveal its magic properties.

    在这篇文章中,我们将探索欧拉公式,解释其含义,来源以及揭示其神奇的特性。

    什么是欧拉公式? (What is Euler’s Formula?)

    Euler’s Formula, coined by Leonhard Euler in the XVIIIth century, is one of the most famous and beautiful formulas in the mathematical world.

    列昂哈德·欧拉 ( Leonhard Euler)在十八世纪创造的欧拉 公式是数学界最著名,最美丽的公式之一。

    It is so, because it relates various apparently very distinct elements like the irrational number e, imaginary numbers, and trigonometrical functions.

    之所以如此,是因为它涉及到各种明显非常不同的元素,例如无理数e ,虚数和三角函数。

    Lets see what it looks like:

    让我们看一下它的样子:

    Image for post
    Euler’s Formula
    欧拉公式

    As we can see, we have our precious number e on the left, the cosine and sine trigonometrical functions on the right, and our imaginary correspondent i on both sides.

    正如我们所看到的,左边有我们的珍贵数字e ,右边有余弦正弦三角函数,而在两侧都有我们的虚构对应物i

    Before we dive into what this formula is telling us, both from a calculus and a geometric perspective, lets first see where this crazy relationship comes from.

    在深入研究此公式要告诉我们的内容之前,首先要从微积分和几何角度出发,先了解一下这种疯狂的关系的来源。

    欧拉公式的历史 (The History of Euler’s Formula)

    In the year 1714 British physicist and mathematician Roger Cotes established in one formula the relationship between logarithms, trigonometrical functions and imaginary numbers.

    1714年,英国物理学家和数学家罗杰·科特斯(Roger Cotes)用一个公式建立了对数,三角函数和虚数之间的关系。

    Twenty years later, Leonhard Euler reached the same formula but using exponential functions instead of logarithms. Cote’s formula is the following:

    二十年后, 莱昂哈德·欧拉 ( Leonhard Euler)得出了相同的公式,只是使用了指数函数而不是对数。 科特的公式如下:

    Image for post
    Roger Cotes Formula
    罗杰·科特斯公式

    To go from Cotes formula to Euler’s we just have to apply exponentials to both sides. To go from Euler’s Formula to Cotes we reverse this process, using logarithms.

    要从Cotes公式转换为Euler公式,我们只需要对双方应用指数。 为了从欧拉公式到科特兹,我们使用对数逆转了这一过程。

    Curiously enough, that none of the authors of the respective formulas saw the geometrical connotation, which is one of the most fascinating insights that can be derived from them. The following figure shows the complex plane, the place where we will see these geometrical connotations.

    令人感到奇怪的是, 各个公式的作者都没有看到几何含义 ,这是可以从中得出的最引人入胜的见解之一。 下图显示了复杂平面,我们将在其中看到这些几何含义。

    Image for post
    The complex plane, with a unit 1 circumference
    圆周为1的复平面

    Before that, you should know that if we particularise Euler’s formula to the value of θ= π we get the famous Euler’s Identity. Lets quickly see it.

    在此之前,您应该知道,如果将欧拉公式特定化为θ 的值,我们将获得著名的欧拉恒等式 。 让我们快速看到它。

    欧拉的身份 (Euler’s Identity)

    As mentioned before, if we set the value of θ the probably most famous number of all times, π, Euler’s Formula becomes Euler’s Identity.

    如前所述,如果我们将θ的值设置为有史以来最著名的数字π,则欧拉公式成为 欧拉的恒等式

    Image for post
    Euler’s Identity
    欧拉的身份

    If you want to see why Euler’s Identity is so intriguing, check out the following post where I explain all about it.

    如果您想了解为什么Euler的身份如此吸引人,请查看以下文章,我将在其中进行所有解释。

    Awesome, now that we know what Euler’s Formula and Euler’s Identity are, lets break the former into its individual elements and explore why it is such an amazing equation.

    太棒了,现在我们知道什么是欧拉公式和欧拉身份, 让我们将前者分解为单独的元素,并探究为什么它是如此惊人的方程式。

    余弦和正弦 (Cosine and Sine)

    The sine and cosine are periodic trigonometrical functions with a period of 2π. This means that every 2π radians they go back to having the same value. The following figure shows these functions.

    正弦和余弦是周期为2π的周期性三角函数。 这意味着每2π弧度它们将返回到相同的值。 下图显示了这些功能。

    Image for post
    Sine (Left) and Cosine (Right) functions
    正弦(左)和余弦(右)功能

    If we look at a triangle with 90º on one of their angles, the sine and the cosine of the angle θ can be calculated using the lengths of the sizes of the sides of such triangle, like shown in the following figure:

    如果我们看一个角度为90º的三角形,则可以使用该三角形的边的大小长度来计算角度θ的正弦和余弦,如下图所示:

    Image for post
    Calculating the values of the sine and cosine of θ using the lengths of the sides of a right angle triangle
    使用直角三角形的边长计算θ的正弦和余弦值

    虚数 (Imaginary numbers)

    Initially, numbers were invented to keep track of the count of entire objects. This is how natural numbers were conceived. Then, a mechanism was needed to keep track of when somebody owed someone else an entire object. Integer numbers were born, which were an extension of the previous natural numbers to the negative side.

    最初,人们发明了数字来跟踪整个对象的数量。 这就是自然数的构想。 然后,需要一种机制来跟踪某人何时欠别人整个物品。 整数诞生了,它是先前自然数向负数的扩展。

    After this, the need to keep track of fractions, or parts of entire objects arose, giving birth to the rational numbers. Finally, numbers that describe fractions whose decimals go on forever (like π) were found in mathematics, and thus irrational numbers were born. All of the previous kind of numbers fall under the category of real numbers.

    此后,就需要跟踪分数或整个对象的一部分,从而产生了有理数 。 最后,在数学中发现了描述小数位数永远不变的分数(例如π)的数字,因此诞生了无理数 。 所有先前的数字都属于实数

    But imaginary numbers are something of a completely different nature.

    但是虚数是完全不同的性质。

    At their birth, imaginary numbers were conceived as a mathematical tool for being able to operate with squared roots of negative numbers, and the term ‘imaginary’ was kind of derogatory. i, the letter denoting imaginary numbers, is equivalent to the square root of -1.

    虚数在诞生之初就被认为是一种能够使用负数平方根进行运算的数学工具 ,而“ 虚数 ”一词是一种贬义。 i是表示虚数的字母,它等于-1的平方根。

    Image for post
    Value of the imaginary number i
    虚数i的值

    It wasn’t until our beloved Euler showed up, that the square root of -1 was given this letter as a representation, and started being considered useful. After this, it naturally appeared in all kinds of problems from physics like the laws of electricity and magnetism, or wave dynamics.

    直到我们心爱的Euler出现 ,才以-1的平方根表示该字母,并开始被认为是有用的。 此后,它自然会出现在物理学中的各种问题中,例如电和磁的定律或波动力学。

    无理数e (The irrational number e)

    The mathematical constant e is one of the most important numbers in mathematics. This constant, despite getting its name from Euler, and sometimes known as Euler’s number, was discovered before this famous mathematician popularised it.

    数学常数e数学中最重要的数字之一。 尽管这个常数从欧拉得名,有时也被称为欧拉数 ,但在这位著名的数学家推广它之前就发现了它。

    Specifically, it was first coined by the prodigious Jacob Bernuilli in 1683 in the study of the compound effect and different calculations regarding the exponential increases of an investment with time. From this point of view, our famous number e was calculated as:

    具体来说,它是由伟大的雅各布·伯努利 ( Jacob Bernuilli) 于1683年首先提出的,用于研究复合效应以及关于投资随时间呈指数增长的不同计算方法。 从这个角度来看,我们的著名数e计算为:

    Image for post
    Calculation of number e
    计算数e

    where this limit converges and takes the value we all know for this number of 2,71828.

    这个极限收敛并采用我们都知道的2,71828的值。

    Despite of this constant being very important, the magic of Euler’s Formula does not come from this precise value, but from the function that this letter’s name has come to steal: the exponential function. Lets check it out.

    尽管这个常数非常重要,但欧拉公式的魔力并不是来自这个精确的值,而是来自这个字母名称所窃取的函数指数函数 。 让我们来看看。

    指数函数 (The exponential function)

    欧拉公式和实数 (Euler’s Formula and Real numbers)

    The general concept that we have for an exponential function is that of repeated multiplication:

    指数函数的一般概念是重复乘法:

    Image for post
    exponential as repeated multiplication
    指数作为重复乘法

    However, what happens when we think about exponentials whose exponent is a square root, a negative number, a fraction, or an imaginary number? The concept of repeated multiplication breaks down. It only holds then the exponent (x in this case) is a positive, integer number.

    但是,当我们考虑指数为平方根,负数,分数或虚数的指数时会发生什么? 重复乘法的概念破裂了 。 它只保留指数(在这种情况下为x)为正整数。

    Exponential functions are more precisely defined by the following series, one of the famous Taylor Series, which we will call exp(x):

    指数函数由以下系列更精确地定义,这是著名的泰勒级数之一 ,我们将其称为exp(x)

    Image for post

    Again, despite seeming infinite this series converges, as the denominator of each fraction grows much faster than the numerator, and the function itself has some amazing properties that allow us to explain the value of fractional and negative exponentials.

    同样,尽管看似无限,但该级数收敛,因为每个分数的分母比分子增长快得多,并且函数本身具有一些惊人的属性, 使我们能够解释分数和负指数的值

    The value of 2,71828 that we know number e for, is the value we get when we input x = 1 into this exponential function, so, for now, we will say exp(1) = e.

    我们知道数字e的值2,71828是当我们将x = 1输入此指数函数时所获得的值,因此,现在,我们将说exp(1)= e。

    The fundamental and most amazing property of this function is that multiplication in the inputs is equal to the addition of the outputs. Adding the inputs (the number in parenthesis, the x in exp(x)), is the same as multiplying the outputs (the number returned by exp(x)):

    此函数的基本和最令人惊奇的特性是输入中的乘法等于输出的相加 。 将输入相加(括号中的数字,exp(x)中的x)与将输出相乘(exp(x)返回的数字)相同:

    Image for post
    Adding the inputs is equal to multiplying the outputs
    输入相加等于输出相乘

    Try it out yourself. Get a calculator and calculate the following:

    自己尝试一下。 获取计算器并计算以下内容:

    • exp(3) = 20.0855

      exp(3)= 20.0855

    • epx(4) = 54.5981

      epx(4)= 54.5981

    • exp(3)exp(4) = 1096.6331

      exp(3)exp(4)= 1096.6331

    • exp(3 + 4) = exp(7) = 1096.6331

      exp(3 + 4)= exp(7)= 1096.6331

    Cool right? Adding the inputs of the exponential functions (3 and 4) is the same as multiplying the individual outputs (exp(3) and exp(4)).

    酷吧? 将指数函数(3和4)的输入相加与将各个输出(exp(3)和exp(4))相乘相同。

    This is not at all trivial, and is probably something nobody would have guessed by just looking at the polynomial Taylor Series. However, it is an awesome property which allows us to answer some of the previous questions.

    这一点都不微不足道 ,可能只是看多项式泰勒级数就不会有人猜到。 但是,这是一个了不起的属性,它使我们能够回答前面的一些问题。

    1. Exponentiating a number to 1/2 means calculating the squared root of that number. How can this be? Lets work it out with the previous property of the exponential function.

      将数字取幂等于1/2意味着计算该数字的平方根。 怎么会这样? 让我们使用指数函数的先前属性进行计算。

    Image for post
    Exponential fraction
    指数分数

    exp(1/2 + 1/2) is equal to exp(1) which is e. exp(1/2 + 1/2) is also equal to exp(1/2)exp(1/2). So exp(1/2) squared is equal to e and therefore exp(1/2) is equal to the squared root of e. Fantastic.

    exp(1/2 + 1/2)等于exp(1) ,即e。 exp(1/2 + 1/2)也等于exp(1/2)exp(1/2) 。 因此exp(1/2)的平方等于e ,因此exp(1/2)等于e的平方根。 太棒了

    2. Exponentiating a number to 0 is equal to 1. We know this thanks to the polynomial Taylor Series when x = 0.

    2. 对数字求幂等于1 。 我们知道这要归功于x = 0时的多项式泰勒级数。

    3. Exponentiating a number to -1 is equal to dividing 1 by that number. This can be easily derived from knowing that exp(0) = 1.

    3.对一个数字求幂等于-1等于将该数字除以1。 这可以从知道exp(0)= 1轻松得出。

    Image for post
    Exponential of a negative number
    负数的指数

    Now, what happens when we take the exp function and insert an imaginary number in it?

    现在,当我们使用exp函数并在其中插入一个虚数时会发生什么?

    欧拉公式和复数 (Euler’s Formula and Complex numbers)

    To see the results of doing this, we need to go back to the complex plane. Lets evaluate complex numbers that exist on the unit circle, painted in pink.

    要查看执行此操作的结果,我们需要回到复杂平面。 让我们评估粉红色涂在单位圆上的复数。

    Image for post
    The complex plane
    复杂的飞机

    Imagine we have the previous imaginary number, described by Euler’s formula and represented in the complex plane by the orange dot.

    想象一下,我们有一个先前的虚数,它由欧拉公式描述,并在复平面中由橙色点表示。

    Image for post
    Euler’s Formula
    欧拉公式

    What happens in our exponential function, if we give it an imaginary number as an argument? What is exp(i θ)?

    如果我们给它一个虚数作为参数,指数函数会发生什么? 什么是 exp( iθ)

    Image for post
    θθ的指数函数的前四个元素,

    Lets pick an specific value for θ and see what comes out of there. If we take θ = 1, and calculate the first 20 elements of exp(i) we get the complex number 0.5403 + 0.8414i. This is the same value that we get from Euler’s Formula, using the cosine and the sine.

    让我们为θ选择一个特定的值,然后看看其中的结果。 如果我们使θ= 1,并计算exp(i)的前20个元素,我们将得到复数0.5403 + 0.8414i 。 这与我们使用余弦和正弦从欧拉公式中获得的值相同。

    It is quite interesting, however, to see how by adding more and more elements in the Taylor series, this calculation becomes more precise, and how this is done geometrically. The following list shows how the value of exp(i) becomes more and more accurate as we take into account more and more elements of the previous series.

    然而,很有趣的是,看看如何通过在泰勒级数中添加越来越多的元素 ,使该计算变得更加精确 ,以及如何在几何上完成该计算 。 以下列表显示了随着我们考虑先前系列中越来越多的元素, exp(i)的值如何变得越来越准确。

    • exp(i) with 1 element in the Taylor series: 1

      泰勒级数中具有1个元素的exp(i) :1

    • exp(i) with 2 elements in the Taylor series: 1 + i

      泰勒级数中有2个元素的exp(i) :1 + i

    • exp(i) with 3 elements in the Taylor series: 0.5 + i

      泰勒级数中包含3个元素的exp(i) :0.5 + i

    • exp(i) with 4 elements in the Taylor series: 0.5 + 0.83333i

      泰勒级数中包含4个元素的exp(i) :0.5 + 0.83333i

    • exp(i) with 5 elements in the Taylor series: 0.541666 + 0.83333i

      泰勒级数中有5个元素的exp(i) :0.541666 + 0.83333i

    • exp(i) with 6 elements in the Taylor series: 0.541666 + 0.841666i

      泰勒级数中包含6个元素的exp(i) :0.541666 + 0.841666i

    • exp(i) with 7 elements in the Taylor series: 0.5402777 + 0.841666i

      泰勒级数中有7个元素的exp(i) :0.5402777 + 0.841666i

    • exp(i) with 8 elements in the Taylor series: 0.5402777 + 0.841468i

      泰勒级数中包含8个元素的exp(i) :0.5402777 + 0.841468i

    • exp(i) with 9 elements in the Taylor series: 0.5403025 + 0.841468i

      泰勒级数中有9个元素的exp(i) :0.5403025 + 0.841468i

    Cool right? Now, lets see something even cooler. The following figure shows the plots of the values of exp(i) as we increase the number of elements considered in the Taylor Series. Each yellow line ends at the value of the complex number calculated with that many elements, and represents an extra addition to the previous one.

    酷吧? 现在,让我们看一些更酷的东西。 下图显示了随着我们增加泰勒级数中考虑的元素数而得出的exp(i)值 。 每条黄线的结尾都是用这么多元素计算出的复数的值,并表示对前一个元素的额外加法。

    Image for post
    The complex plane and the values of exp(i) as we add more and more elements of the polynomial series. In the end, after adding 5 elements we can see that we are really close to the real value, which is on top of the unit circle.
    当我们添加越来越多的多项式序列的元素时,复平面和exp(i)的值。 最后,添加5个元素后,我们可以看到我们确实接近单位圆顶部的实际值。

    As we can see, a kind of spiral is formed, that gets closer and closer to the final value of the exponential that we can verify with Euler’s Formula. This is awesome, and it tells us something really beautiful about exponentials.

    如我们所见, 形成了一种螺旋这种螺旋越来越接近我们可以用欧拉公式验证的指数的最终值 。 这太棒了,它告诉我们有关指数的某些知识。

    Independently of the value of θ, if we use enough elements of the polynomial series exp(iθ) always ends up in the unit circle, with a rotation around it of θ radians.

    独立地θ的值的,如果我们使用多项式系列EXP(Iθ)的足够的元素总是在单位圆结束,与它周围的旋转θ弧度。

    This is shown in the following figures, where the same plot as before has been created for different values of θ.

    如下图所示,其中针对不同的θ值创建了与以前相同的图

    Image for post
    Image for post
    Image for post

    As we can see from the previous figures, exp(iθ) always ends up in the unit circle if enough elements from the series are used. For any value of theta that we use, if we take enough elements of the polynomial series this always happens, just by adding, rotating and multiplying these yellow lines that represent an additional element of the series.

    从前面的图中可以看出,如果使用了序列中足够的元素, exp(iθ)总是以单位圆结束 对于我们使用的任何theta值,如果我们采用多项式级数的足够多的元素,则总是会发生这种情况 ,只需将代表该系列的另一个元素的黄线相加,旋转和相乘即可。

    Also, you might have noticed already, but in the last figure (θ = π) what we are plotting is Euler’s Identity. Lets recover the formula, because this last plot also contains some beautiful insights:

    另外,您可能已经注意到,但是 在最后一个图中(θ=π),我们绘制的是欧拉身份 。 让我们恢复公式,因为这最后一个图也包含一些美丽的见解:

    Image for post
    Euler’s Identity
    欧拉的身份

    If we plug in (θ = π), we get Euler’s Identity, which mathematically and geometrically tell us this: by raising a constant(e) to , we walk a distance of π around the unit circle, and we arrive at the point -1, with no imaginary part, which is also the right side of the formula.

    如果插入(θ=π) ,我们得到欧拉恒等式,该恒等式在数学和几何上告诉我们:通过将常数( e ) 增大 ,我们在单位圆周围走了π距离,然后我们到达了点-1,没有虚部,也是公式的右侧。

    Image for post
    Euler’s Identity
    欧拉的身份

    Geometrically, as we’ve seen, this all happens by rotating vectors and multiplying their lengths.

    如我们所见,在几何上, 所有这些都是通过旋转向量并乘以它们的长度来实现的。

    This is completely baffling!

    这简直令人莫名其妙!

    One of the main reasons that this comes to be, is what happens in the complex plane when we multiply a number by i. Multiplying by i implies a 90º rotation from the origin around the unit circle, like shown in the following figure.

    造成这种情况的主要原因之一是,当我们将数字乘以i时,复平面中会发生什么。 乘以i意味着从原点绕单位圆旋转90º ,如下图所示。

    Image for post
    exp(i) and exp(i)*i, which leads to a rotation of 90º around the unit circle.
    exp(i)和exp(i)* i,导致围绕单位圆旋转90º。

    结论 (Conclusion)

    Euler’s formula is one of the most beautiful formulas of our days. It beautifully connects many different elements, and its geometrical interpretation and origin are something completely wonderful.

    欧拉公式是当今最美丽的公式之一。 它精美地连接了许多不同的元素,并且它的几何解释和起源完全是一件美妙的事。

    It is like nature is trying to tell us something with it.

    就像大自然试图用它告诉我们一些事情。

    I hope this post has made you learn and taught you the fascinating insights behind Euler’s Formula.

    我希望这篇文章能使您学习并教给您Euler公式背后的迷人见解。

    Feel free to follow me on Twitter at @jaimezorno. Also, you can take a look at my posts on Data Science, Maths and Machine Learning here. Have a good read!

    请随时通过@jaimezorno 在Twitter关注我 。 另外,您也可以看一下我在数据科学,数学和机器学习方面的文章 在这里 。 祝您阅读愉快!

    For more posts like this one follow me on Medium, and stay tuned!

    对于更多这样的帖子 在Medium上关注我 ,敬请期待!

    If you wish to learn more, the following Channel has some awesome videos on Euler’s Formula, Euler’s Equation and the intuition behind complex numbers.

    如果您想了解更多信息,请在下面的频道中观看有关Euler公式,Euler方程以及复数背后的直觉的精彩视频。

    翻译自: https://medium.com/swlh/eulers-formula-11a991fc3829

    欧拉公式ejwt

    展开全文
  • 欧拉函数:http://blog.csdn.net/sentimental_dog/article/details/52002608  http://www.cnblogs.com/linyujun/p/5194170.html 公式:http://blog.163.com/sg_ljb/blog/static/4425180420103144343202/ 定理...

    欧拉函数:http://blog.csdn.net/sentimental_dog/article/details/52002608

          http://www.cnblogs.com/linyujun/p/5194170.html

    公式:http://blog.163.com/sg_ljb/blog/static/4425180420103144343202/

     

    定理:当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。

    转载于:https://www.cnblogs.com/fzuhyj/p/8022592.html

    展开全文
  • 多面体及欧拉公式及广义欧拉公式

    千次阅读 2017-01-17 17:45:09
    它们满足欧拉公式:v - e + f = 2, 其中v是顶点(vertex)数,e是边(edge)数,f是面(face)数。 而对于非简单多面体,指那些在多面体的表面上有环,和洞的多面体。它们满足广义欧拉公式:v - e + f - r = 2(s - h...

    像正方体,四棱锥这样的平面多面体属于简单多面体,它们可以与球拓扑同构,即可以连续拓扑变换成一个球。它们满足欧拉公式:v - e + f = 2, 其中v是顶点(vertex)数,e是边(edge)数,f是面(face)数。

    而对于非简单多面体,指那些在多面体的表面上有环,和洞的多面体。它们满足广义欧拉公式:v - e + f - r = 2(s - h), 其中r是环(ring)数,h是洞(hole)数,s是相互分离的多面体(shell)数。如何理解,r,h,s呢?简单的说,r是在一个面上的内环,而h是贯穿多面体的孔洞,在只有一个实体即s=1时,r=2h,产生一个洞就产生两个环;s通常为1,没有环也没有洞时广义欧拉公式就退化为欧拉公式。s如果为多个,就相当于各算各的顶点,边,面,环,洞的数量然后相加,同样满足广义欧拉公式。下图是s为2的例子,右边的图示左边这个多面体的切开的图,可以看出这个多面体有一个贯穿的长方体孔洞,和一个内嵌的立方体,该内嵌的立方体对s的贡献为1,所以s为2。

    展开全文
  • 欧拉公式

    万次阅读 多人点赞 2019-01-11 17:15:48
    欧拉公式欧拉公式——真正的宇宙第一公式e[^x i] = cos(x) + i * sin(x) 欧拉公式——真正的宇宙第一公式 e[^x i] = cos(x) + i * sin(x) 原文链接link
  • 欧拉公式和改进的欧拉公式C++源码

    千次阅读 2017-11-07 08:39:58
    欧拉公式和改进的欧拉公式C++源码
  • 欧拉公式之美

    万次阅读 多人点赞 2018-04-07 19:39:17
    如何通俗易懂地解释欧拉公式(e^πi+1=0)?欧拉公式将指数函数的定义域扩大到了复数域,建立和三角函数和指数函数的关系,被誉为“数学中的天桥”1、从自然数扩张到整数:增加的负数对应着“负债,减少”2、从整数...

空空如也

1 2 3 4 5 ... 20
收藏数 2,212
精华内容 884
关键字:

欧拉公式