精华内容
参与话题
问答
  • 模型及详细使用地址:RC低通滤波器 低通滤波器 图中输入电压为Vi,输出电压为Vo,假设输出阻抗很大,不带负载,输入阻抗很小,理想情况,可以得到一下公式: 进行拉氏变换,假设电容初始电压为0: ...

    模型及详细使用地址:RC低通滤波器

    低通滤波器

    图中输入电压为Vi,输出电压为Vo,假设输出阻抗很大,不带负载,输入阻抗很小,理想情况,可以得到一下公式:

    进行拉氏变换,假设电容初始电压为0:

    此时幅值为原来的0.707倍,相位延迟45度;
    Multisim初始电压一直有值,未找到原因;
    采用Simulink没有问题,如下图电路,Ts = 1e-5;:

    传递函数和电容端电压差值,基本没有误差:

    展开全文
  • 1.低通滤波器使用说明:将下列代码幅值然后以m文件保存,文件名要与函数名相同,这里函数名:lowp。function y=lowp(x,f1,f3,rp,rs,Fs) %低通滤波 %使用注意事项:通带或阻带的截止频率的选取范围是不能超过采样率的...

    本文为转载内容,原文地址为点击打开链接

    下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意!

    1.低通滤波器

    使用说明:将下列代码幅值然后以m文件保存,文件名要与函数名相同,这里函数名:lowp。

    function y=lowp(x,f1,f3,rp,rs,Fs)
    %低通滤波
    %使用注意事项:通带或阻带的截止频率的选取范围是不能超过采样率的一半
    %即,f1,f3的值都要小于 Fs/2
    %x:需要带通滤波的序列
    % f 1:通带截止频率
    % f 3:阻带截止频率
    %rp:边带区衰减DB数设置
    %rs:截止区衰减DB数设置
    %FS:序列x的采样频率
    % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值
    % Fs=2000;%采样率
    %
    wp=2*pi*f1/Fs;
    ws=2*pi*f3/Fs;
    % 设计切比雪夫滤波器;
    [n,wn]=cheb1ord(wp/pi,ws/pi,rp,rs);
    [bz1,az1]=cheby1(n,rp,wp/pi);
    %查看设计滤波器的曲线
    [h,w]=freqz(bz1,az1,256,Fs);
    h=20*log10(abs(h));
    figure;plot(w,h);title('所设计滤波器的通带曲线');grid on;
    %
    y=filter(bz1,az1,x);%对序列x滤波后得到的序列y
    end
    --------------------------------------

    低通滤波器使用例子的代码

    fs=2000;
    t=(1:fs)/fs;
    ff1=100;
    ff2=400;
    x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t);
    figure;
    subplot(211);plot(t,x);
    subplot(212);hua_fft(x,fs,1);
    %低通测试
    % y=filter(bz1,az1,x);
    y=lowp(x,300,350,0.1,20,fs);
    figure;
    subplot(211);plot(t,y);
    subplot(212);hua_fft(y,fs,1);%hua_fft()函数是画频谱图的函数,代码在下面给出,要保存为m文件调用
    %这段例子还调用了我自己写的专门画频谱图的函数,也给出,不然得不出我的结果;

    %画信号的幅频谱和功率谱
    %频谱使用matlab例子表示
    function hua_fft(y,fs,style,varargin)
    %当style=1,画幅值谱;当style=2,画功率谱;当style=其他的,那么花幅值谱和功率谱
    %当style=1时,还可以多输入2个可选参数
    %可选输入参数是用来控制需要查看的频率段的
    %第一个是需要查看的频率段起点
    %第二个是需要查看的频率段的终点
    %其他style不具备可选输入参数,如果输入发生位置错误
    nfft=2^nextpow2(length(y));%找出大于y的个数的最大的2的指数值(自动进算最佳FFT步长nfft)
    %nfft=1024;%人为设置FFT的步长nfft
      y=y-mean(y);%去除直流分量
    y_ft=fft(y,nfft);%对y信号进行DFT,得到频率的幅值分布
    y_p=y_ft.*conj(y_ft)/nfft;%conj()函数是求y函数的共轭复数,实数的共轭复数是他本身。
    y_f=fs*(0:nfft/2-1)/nfft;�T变换后对应的频率的序列
    % y_p=y_ft.*conj(y_ft)/nfft;%conj()函数是求y函数的共轭复数,实数的共轭复数是他本身。
    if style==1
        ifnargin==3
           plot(y_f,2*abs(y_ft(1:nfft/2))/length(y));%matlab的帮助里画FFT的方法
           %ylabel('幅值');xlabel('频率');title('信号幅值谱');
           %plot(y_f,abs(y_ft(1:nfft/2)));%论坛上画FFT的方法
        else
           f1=varargin{1};
           fn=varargin{2};
           ni=round(f1 * nfft/fs+1);
           na=round(fn * nfft/fs+1);
           plot(y_f(ni:na),abs(y_ft(ni:na)*2/nfft));
        end
    
    elseif style==2
               plot(y_f,y_p(1:nfft/2));
               %ylabel('功率谱密度');xlabel('频率');title('信号功率谱');
        else
           subplot(211);plot(y_f,2*abs(y_ft(1:nfft/2))/length(y));
           ylabel('幅值');xlabel('频率');title('信号幅值谱');
           subplot(212);plot(y_f,y_p(1:nfft/2));
           ylabel('功率谱密度');xlabel('频率');title('信号功率谱');
    end
    end

    下面三幅图分别是滤波前的时频图,滤波器的滤波特性曲线图和滤波后的时频图,通过图可以看出成功留下了100Hz的低频成分而把不要的高频成分去除了。

    2.高通滤波器

    function y=highp(x,f1,f3,rp,rs,Fs)
    %高通滤波
    %使用注意事项:通带或阻带的截止频率的选取范围是不能超过采样率的一半
    %即,f1,f3的值都要小于 Fs/2
    %x:需要带通滤波的序列
    % f 1:通带截止频率
    % f 2:阻带截止频率
    %rp:边带区衰减DB数设置
    %rs:截止区衰减DB数设置
    %FS:序列x的采样频率
    % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值
    % Fs=2000;%采样率
    %
    wp=2*pi*f1/Fs;
    ws=2*pi*f3/Fs;
    % 设计切比雪夫滤波器;
    [n,wn]=cheb1ord(wp/pi,ws/pi,rp,rs);
    [bz1,az1]=cheby1(n,rp,wp/pi,'high');
    
    %查看设计滤波器的曲线
    [h,w]=freqz(bz1,az1,256,Fs);
    h=20*log10(abs(h));
    figure;plot(w,h);title('所设计滤波器的通带曲线');grid on;
    y=filter(bz1,az1,x);
    end

    下面是高通滤波器的例子

    fs=2000;
    t=(1:fs)/fs;
    ff1=100;
    ff2=400;
    x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t);
    figure;
    subplot(211);plot(t,x);
    subplot(212);hua_fft(x,fs,1);
    
    %------高通测试
    z=highp(x,350,300,0.1,20,fs);
    figure;
    subplot(211);plot(t,z);
    subplot(212);hua_fft(z,fs,1);


    下面三幅图分别是滤波前的时频图,滤波器的滤波特性曲线图和滤波后的时频图,通过图可以看出成功留下了400Hz的高频成分而把不要的低频成分100Hz去除了。


    3.带通滤波器

    function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs)
    %带通滤波
    %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半
    %即,f1,f3,fs1,fsh,的值小于 Fs/2
    %x:需要带通滤波的序列
    % f 1:通带左边界
    % f 3:通带右边界
    % fs1:衰减截止左边界
    % fsh:衰变截止右边界
    %rp:边带区衰减DB数设置
    %rs:截止区衰减DB数设置
    %FS:序列x的采样频率
    % f1=300;f3=500;%通带截止频率上下限
    % fsl=200;fsh=600;%阻带截止频率上下限
    % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值
    % Fs=2000;%采样率
    %
    wp1=2*pi*f1/Fs;
    wp3=2*pi*f3/Fs;
    wsl=2*pi*fsl/Fs;
    wsh=2*pi*fsh/Fs;
    wp=[wp1 wp3];
    ws=[wsl wsh];
    %
    % 设计切比雪夫滤波器;
    [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs);
    [bz1,az1]=cheby1(n,rp,wp/pi);
    %查看设计滤波器的曲线
    [h,w]=freqz(bz1,az1,256,Fs);
    h=20*log10(abs(h));
    figure;plot(w,h);title('所设计滤波器的通带曲线');grid on;
    y=filter(bz1,az1,x);
    end

    带通滤波器使用例子

    %--------------
    %带通滤波器测试程序
    fs=2000;
    t=(1:fs)/fs;
    ff1=100;
    ff2=400;
    ff3=700;
    x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t)+sin(2*pi*ff3*t);
    figure;
    subplot(211);plot(t,x);
    subplot(212);hua_fft(x,fs,1);
    % y=filter(bz1,az1,x);
    y=bandp(x,300,500,200,600,0.1,30,fs);
    figure;
    subplot(211);plot(t,y);
    subplot(212);hua_fft(y,fs,1);


    %调用到的hua_fft()函数代码如下

    function hua_fft(y,fs,style,varargin)
    %当style=1,画幅值谱;当style=2,画功率谱;当style=其他的,那么花幅值谱和功率谱
    %当style=1时,还可以多输入2个可选参数
    %可选输入参数是用来控制需要查看的频率段的
    %第一个是需要查看的频率段起点
    %第二个是需要查看的频率段的终点
    %其他style不具备可选输入参数,如果输入发生位置错误
    nfft=2^nextpow2(length(y));%找出大于y的个数的最大的2的指数值(自动进算最佳FFT步长nfft)
    %nfft=1024;%人为设置FFT的步长nfft
      y=y-mean(y);%去除直流分量
    y_ft=fft(y,nfft);%对y信号进行DFT,得到频率的幅值分布
    y_p=y_ft.*conj(y_ft)/nfft;%conj()函数是求y函数的共轭复数,实数的共轭复数是他本身。
    y_f=fs*(0:nfft/2-1)/nfft;�T变换后对应的频率的序列
    % y_p=y_ft.*conj(y_ft)/nfft;%conj()函数是求y函数的共轭复数,实数的共轭复数是他本身。
    if style==1
        ifnargin==3
           plot(y_f,2*abs(y_ft(1:nfft/2))/length(y));%matlab的帮助里画FFT的方法
           %ylabel('幅值');xlabel('频率');title('信号幅值谱');
           %plot(y_f,abs(y_ft(1:nfft/2)));%论坛上画FFT的方法
        else
           f1=varargin{1};
           fn=varargin{2};
           ni=round(f1 * nfft/fs+1);
           na=round(fn * nfft/fs+1);
           plot(y_f(ni:na),abs(y_ft(ni:na)*2/nfft));
        end
    
    elseif style==2
               plot(y_f,y_p(1:nfft/2));
               %ylabel('功率谱密度');xlabel('频率');title('信号功率谱');
        else
           subplot(211);plot(y_f,2*abs(y_ft(1:nfft/2))/length(y));
           ylabel('幅值');xlabel('频率');title('信号幅值谱');
           subplot(212);plot(y_f,y_p(1:nfft/2));
           ylabel('功率谱密度');xlabel('频率');title('信号功率谱');
    end
    end
    运行结果如下图,第一幅是滤波前测试信号的时频图,第二幅是滤波器的滤波曲线图,第三幅是经滤波后的测试信号时频图。

    4.带阻滤波器

    function y=bands(x,f1,f3,fsl,fsh,rp,rs,Fs)
    %带阻滤波
    %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半
    %即,f1,f3,fs1,fsh,的值小于 Fs/2
    %x:需要带通滤波的序列
    % f 1:通带左边界
    % f 3:通带右边界
    % fs1:衰减截止左边界
    % fsh:衰变截止右边界
    %rp:边带区衰减DB数设置
    %rs:截止区衰减DB数设置
    %FS:序列x的采样频率
    % f1=300;f3=500;%通带截止频率上下限
    % fsl=200;fsh=600;%阻带截止频率上下限
    % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值
    % Fs=2000;%采样率
    %
    wp1=2*pi*f1/Fs;
    wp3=2*pi*f3/Fs;
    wsl=2*pi*fsl/Fs;
    wsh=2*pi*fsh/Fs;
    wp=[wp1 wp3];
    ws=[wsl wsh];
    %
    % 设计切比雪夫滤波器;
    [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs);
    [bz1,az1]=cheby1(n,rp,wp/pi,'stop');
    %查看设计滤波器的曲线
    [h,w]=freqz(bz1,az1,256,Fs);
    h=20*log10(abs(h));
    figure;plot(w,h);title('所设计滤波器的通带曲线');grid on;
    y=filter(bz1,az1,x);
    end

    使用例子

    %带阻滤波器测试
    fs=1000;
    t=(1:fs)/fs;
    y=sin(2*pi*100*t)+sin(2*pi*150*t)+sin(2*pi*200*t);
    figure;hua_fft(y,fs,1);
    z=bands(y,110,190,140,160,0.1,30,fs);
    figure;hua_fft(z,fs,1);

    运行结果如下图,第一幅是滤波前测试信号的频谱图,第二幅是滤波器的滤波曲线图,第三幅是经滤波后的测试信号频谱图。




    展开全文
  • 1.灰度变换增强程序 2.直方图灰度变换 3.直方图均衡化程序举例 4.直方图规定化程序举例 1.线性平滑滤波 2.中值滤波器 3. 4邻域8邻域平均滤波算法 1.低通滤波器 2.布特沃斯低通滤波器图像实例
  • RC一阶低通滤波器

    万次阅读 多人点赞 2018-08-10 17:18:42
    由于工作原因一直在接触滤波器,但是对其详细概念和原理一知半解,所以一直想好好学习一下。最近终于抽出时间搜遍各种资料,但总觉得知识点太散,不太方便系统的理解,所以自己整理了一下,希望有所帮助。 第一次...

    由于工作原因一直在接触滤波器,但是对其详细概念和原理一知半解,所以一直想好好学习一下。最近终于抽出时间搜遍各种资料,但总觉得知识点太散,不太方便系统的理解,所以自己整理了一下,希望有所帮助。

    第一次编辑发博客,实在不易,word编辑好了,想直接拷贝上来还不行,公式无法复制,只好一个个截图,实在尴尬!是不是我没掌握技巧。

    文章参照和汇集多位大神之作,如有侵权还请给予谅解,谢谢!@长弓的坚持 @JasonLeaster

     https://blog.csdn.net/wordwarwordwar/article/details/53495616  //对滤波器截止频率的解释非常详细,@长弓的坚持

    https://blog.csdn.net/cinmyheart/article/details/26759659    //对bode图的讲解实在精妙,@JasonLeaster

    1. 滤波器截止频率的理解

    物理学电机工程学中,一个系统的输出信号的能量通常随输入信号的频率发生变化(频率响应)。截止频率英语Cutoff frequency[1]是指一个系统的输出信号能量开始大幅下降(在带阻滤波器中为大幅上升)的边界频率。

    • 概述

    电子滤波器等信号传输通道中的诸如低通高通带通带阻等频带特性都应用了截止频率的概念。截止频率有时被定义为电子滤波器的导通频带和截止频带的交点,例如电路标称输出信号减3分贝的位置的频率。在带阻滤波器中,截止频率则被定义在输出信号能量大幅上升(或大幅下降)、失去“阻止”(或失去“通过”)信号效果的位置。在波导管或者天线的例子中,截止频率通常包括上限频率和下限频率。

    截止频率的概念除了在电子工程有广泛应用,截止频率的概念还在等离子区振荡中有所应用。

     

     

    • 电子学

    参见:波德图分贝

    电子学中,截止频率是电路(例如导线、放大器、电子滤波器)输出信号功率超出或低于传导频率时输出信号功率的频率。通常截止频率时输出功率为传导频率的一半,在波德图相当于为降低3分贝的位置所表示的功率,因为此时功率比例 传到频带上的输出功率[2]

    • RC低通滤波器

    当信号频率低于这个截止频率f0时,信号得以通过;当信号频率高于这个截止频率时,信号输出将被大幅衰减。这个截止频率即被定义为通带和阻带的界限。

                                http://s10.sinaimg.cn/orignal/66d362d7tx6DfixCrPjb9&690

    • 网络函数

            

    其中:1/RC 有频率的量纲。如令代入公式(1)得到

                                  

    • 幅频特性和相频特性

    根据公式(2)

                             

                         

    • 计算dB增益

                     

                     

    • Matlab 绘制bode plot

    根据网络函数,将s=jw 代入则有

                                                          

    一阶低通滤波器Matlab 代码

    clear all

    clc

    syms s

    hold on

    %% abstract the object which is controled into a function 1/(s+1) 

    num = 1;

    den = sym2poly(s+1);

    G = tf(num,den);

    bode(G);grid on;

    得到Bode图如下:

                                                         

    • 回顾截止频率的定义

                                             

    结合幅频特性和Bode 图来理解截止频率似乎就明了了:

    • 当f<<f0时,信号完整通过,输出信号功率大约等于输入信号功率;
    • 当f=f0时,信号受到-3db压制,此时,输出信号功率大约为输入信号信号功率的0.707;
    • 当​​f>>f0​​​​​ ,信号被截止,也就是信号受到 的抑制。

    总结:小于截止频率的信号保持通过,大于截止频率的信号被截止,越大被拦截的越干净,所以称之:低通滤波器

    展开全文
  • 一阶RC和二阶RC低通滤波器

    万次阅读 2019-07-19 10:50:09
    一阶RC和二阶RC滤波电路RC电路原理推导一阶RC低通滤波电路二阶RC低通滤波电路 RC电路原理推导 因为最近有做一些RC滤波电路的东西,这部分内容都是在大学本科的时候学习的,很多东西也记得不是很清晰了,手头也没有...

    RC电路原理推导

    因为最近有做一些RC滤波电路的东西,这部分内容都是在大学本科的时候学习的,很多东西也记得不是很清晰了,手头也没有资料翻阅,在网上看的资料都是五花八门各不一样,很多都出现错误,并且对于二阶RC电路的介绍很少,所以我做了一些整理。

    一阶RC低通滤波电路

    一阶RC低通滤波电路如下图所示
    在这里插入图片描述对应系统的传递函数的表达式如下UoUi=1RCS+1\frac{\mathrm{U}_{\mathrm{o}}}{\mathrm{U}_{\mathrm{i}}}=\frac{1}{R C S+1}
    对其进行离散化处理S=1z1TS=\frac{1-z^{-1}}{T}
    可得RC1z1TRC1z1T+1=RC(1z1)RC(1z1)+T=YnXn\frac{R C \cdot \frac{1-z^{-1}}{T}}{R C \frac{1-z^{-1}}{T}+1}=\frac{R C\left(1-z^{-1}\right)}{R C\left(1-z^{-1}\right)+T}=\frac{Y_{n}}{X_{n}}
    整理可得Yn=TT+RCXn+RCT+RCYn1Y_{n}=\frac{T}{T+R C} X_{n}+\frac{RC}{T+R C} Y_{n-1}
    以上就是我们常见的一阶滤波的形式,转换成我们常见的表达式就是Yn=aXn+(1a)Yn1Y_{n}=a X_{n}+(1-a) Y_{n-1}

    二阶RC低通滤波电路

    好了讲完一阶来讲二阶,二阶相对于一阶计算的时候要复杂一点,思路还是一样的,二阶RC低通滤波的电路如下所示
    在这里插入图片描述
    二阶RC低通滤波器的传递函数表达式为U0Ui=1SC//(R+1SC)R+1SC/(R+1SC)1SCR+1SC\frac{U_{0}}{U_{i}}=\frac{\frac{1}{S C} / /\left(R+\frac{1}{SC}\right)}{R+\frac{1}{SC} /\left(R+\frac{1}{SC}\right)} \cdot \frac{\frac{1}{SC}}{R+\frac{1}{SC}}
    简化后可得U0Ui=RCS+1R2C2S2+3RCS+11RCS+1=1R2C2S2+3RCS+1\frac{U_{0}}{U_{i}}=\frac{RCS+1}{R^{2} C^{2} S^{2}+3 R C S+1} \cdot \frac{1}{R C S+1}=\frac{1}{R^{2} C^{2} S^{2}+3 R C S+1}
    离散化S=1z1TS=\frac{1-z^{-1}}{T}可得T2R2C2(1z1)2+3RC(1z1)+T2=YnXn\frac{T_{}^{2}}{R^{2} C^{2}\left(1-z^{-1}\right)^{2}+3 R C\left(1-z^{-1}\right)+T^{2}}=\frac{Y_{n}}{X_{n}}整理后可得Yn=T2R2C2+T2+3RCXn+2R2C2+3RCR2C2+T2+3RCYn1+R2C2R2C2+T2+3RCYn2Y_{n}=\frac{T^{2}}{R^{2} C^{2}+T^{2}+3 RC}X_{n}+\frac{2 R^{2} C^{2}+3 R C}{R^{2} C^{2}+T^{2}+3 R C} Y_{n-1}+\frac{- R^{2} C^{2}}{R^{2} C^{2}+T^{2}+3 R C} Y_{n-2}可以看出二阶RC与除了与当前时刻的输入有关系还和上两个时刻的输出有关。

    展开全文
  • 设计一个RC高通滤波器或低通滤波器

    万次阅读 2019-05-03 11:42:42
    一、引出 在一些信号电路中通常会存在一些我们不需要的噪声,比如高频噪声。这个时候就需要滤波器来处理他们了。 二、滤波器电路图及其截止频率计算公式 一阶RC滤波器电路图如上,截止...低通滤波器会对高于...
  • 一阶RC滤波器的算法实现(低通和高通)

    万次阅读 多人点赞 2018-09-12 15:19:43
    目前,项目需要处理信号。目标信号是特定频率范围内...1、一阶RC低通滤波器的算法实现 1.1 算法推导 1.2 波特图 1.3 用C语言实现  2、一阶RC高通滤波器的原理以及实现 2.1 原理推导 2.2 波特图 2.3 用C语言...
  • RC低通滤波器

    千次阅读 多人点赞 2018-11-10 21:54:00
    先来几个不错的资源链接: ...2.详谈一阶RC低通滤波器如何过滤高频噪声(网上不错的一个帖子)http://www.elecfans.com/instrument/631912.html 3.【滤波器学习笔记】一阶RC低通滤波(下页截图来源)...
  • 在RC低通滤波器中,有时只需加快对应阶跃响应上升变化的响应。截止频率低,上升时的阶跃响应快。如果只从阶跃响应来看,时间常数T=RC小是好的,但这样会使从频率轴上看的截止频率变高。  例如,作为需要钻研的RC...
  • 电子设计教程2:RC低通滤波器

    千次阅读 2020-02-02 18:29:42
      吃火锅的时候,圆滚滚的鱼丸不好用...  有源滤波器:一般由集成运放和RC网络组成,由电源向集成运放提供能量。除了滤除波形以外,还能够放大特定频率的波形。   无源滤波器:一般由电容、电感、电阻等无源元...
  • 将普通硬件RC低通滤波器的微分方程用差分方程来表求,变可以采用软件算法来模拟硬件滤波的功能,经推导,低通滤波算法如下: 式中  :本次采样值  :本次滤波的输出值  :上次的滤波输出值 a :滤波...
  • 基于matlab的不同阶数RC低通滤波器的幅频特性比较
  • 所谓低通滤波器是指低频率时通过、高频率时截止,能除去噪声等不需要的高频率的滤波器。  图1 RC电路的频率一增益/相位特性  使用比RC常数所决定的频率f,(称截止频率)低的输人频率时,信号的衰减小;相反...
  • RC低通滤波器具有如图1(a)所示的,位于1/(RC)处的实数极点和一个位于无限大的零点。经带通变换后,产生一对复数极点和一对分别在原点和无限大处的零点,如图1(b)所示。从原点到极点的径向距离为1/(LC)1/2,...
  • 本m文件基于matlab使用firpm函数计算出滤波器系数,从而完成了使用FIR滤波器拟合一阶RC电路的功能。这种思想可以扩展到其他的传输函数上。
  • 已知:ui 、R1、C1。 采用相量法和传递函数法的两种求解: (1)、输入阻抗Zi。 (2)、输入电流ii。 (3)、输出电压uo。 (4)、输入电流与输入电压的相位差ii _ iu和时间差tii _ iu 。...
  • 一阶RC低通滤波器详解(仿真+matlab+C语言实现)

    万次阅读 多人点赞 2020-02-06 19:54:36
    文章目录预备知识 预备知识 一阶RC低通滤波器可以滤除频率高于截止频率的信号,类似的还有高通滤波器,带通滤波器,带阻滤波器,
  • 二阶RC有源滤波器的功能是让一定频率的信号通过,而急剧衰减或抑制此频率范围外的信号。常用的电路有电压控制电压源(VCVS)和无限增益多路反馈(MFB)电路。
  • https://blog.csdn.net/forhill/article/details/81565576 文章写的不错,嘿嘿。 直接转载了。
  • 图1(a)所示为一个6阶椭圆函数低通滤波器电路。将对低通元件值进行频率和阻抗变换后进行带通变换,即让每个电感串联电容,每个电容并联电感使之谐振于带通中心频率几。由此可得图1(b)所示的电路。  图1 椭圆...
  • 一阶RC低通滤波器杂记

    万次阅读 2015-11-09 15:24:08
    关于一阶滤波器的种种有很多资料可查,像截止频率啊,相移啊什么的...本文从无源RC低通滤波器说起,以一个实例为讨论背景:有一个心电放大电路,最后一级输出阻抗50欧姆,但是该电路输出信号存在明显的毛刺,那么我们想
  • 数电数电实验五 RC有源低通与带阻滤波器
  • 利用模拟低通滤波器设计带通、带阻、高通模拟滤波器 参考:《数字信号处理 第四版》高西全、丁玉美 最近学到第六章了,利用模拟低通滤波器设计不同类型的模拟滤波器,我们重点在设计巴特沃斯滤波器。 巴特沃斯滤波器...
  • RC低通滤波器的代表应用之一,是防止机械开关、机械触点的振荡。机械触点的振荡(触点ON时产生大的振动)被开关的构造左右,首先我们实测一下微型开关的振荡。  图1是称为限位开关的微型开关的振荡波形图。机械...
  • RC低通和高通滤波器传导函数
  • RC低通滤波器的响应特性

    千次阅读 2010-08-27 17:36:00
    由电阻(R)和电容(C)构成的RC电路是电子电路中使用最多的电路。首先,研究简单的RC电路的特性,针对在CMOS数字电路中的应用进行实验。

空空如也

1 2 3 4 5 ... 20
收藏数 3,702
精华内容 1,480
关键字:

rc滤波器