rc电路_rc电路 二阶 - CSDN
精华内容
参与话题
  • RC电路讲解

    万次阅读 多人点赞 2018-06-10 12:04:19
    1. RC微分电路 如图1所示,电阻R和电容C串联后接入输入信号VI,由电阻R输出信号VO,当RC 数值与输入方波宽度tW 之间满足:RC << tW,这种电路就称为微分电路。在 R两端(输出端)得到正、负相间...

          R和C组成的电路非常多,应用也非常广泛,下面分别谈谈微分电路、积分电路、耦合电路、脉冲分压器以及滤波电路

    1. RC微分电路

      如图1所示,电阻R和电容C串联后接入输入信号VI,由电阻R输出信号VO,当RC 数值与输入方波宽度t之间满足:R<< tW,这种电路就称为微分电路。在 R两端(输出端)得到正、负相间的尖脉冲,而且发生在方波的上升沿和下降沿,如图2的最下面那幅图所示


     在t=t1时,VI由0→Vm,因电容上电压Vc不能突变(来不及充电,相当于短 路,VC=0),输入电压VI全降在电阻R上,即VO=VR=VI=V m 。随后(t>t1),电容C的电压按指数规律快速充电上升,输出电压随之按指数规 律下降(因VO=VI-VC=Vm-VC),τ(RC)的值愈小,此过程愈快,输出正 脉冲愈窄。
      t=t2时,VI由Vm→0,相当于输入端被短路,电容原先充有左正右负的电压V m开始按指数规律经电阻R放电,刚开始,电容C来不及放电,他的左端(正电)接地 ,所以VO=-Vm,之后VO随电容的放电也按指数规律减小,同样经过大 约3τ后,放电完毕,输出一个负脉冲。

      只要脉冲宽度tW>(5~10)τ,在tW时间内,电容C已完成充电或放电(约需3 τ),输出端就能输出正负尖脉冲,才能成为微分电路,因而电路的充放电时间常数τ必须 满足:τ<(1/5~1/10)tW,这是微分电路的必要条件。

       于是我们就来做下仿真,就用multisim来仿真下,看下参数是否符合要求。首先搭建电路及仿真图如下:


      通过计算得T = R1C1 = 1mS (T = RC 为1- 1/e=0.63),看下图,在1ms(T)时,我们测量此时的电压为3.189,计算得占5V的比值为0.63,所以与理论符合,注意当从5V降为0V时,看曲线则应是0.37倍总幅值时对应的时间值。

     


      由于输出波形VO与输入波形VI之间恰好符合微分运算的结果[VO=RC( dVI/dt)],即输出波形是取输入波形的变化部分。如果将VI按傅里叶级展开 ,进行微分运算的结果,也将是VO的表达式。他主要用于对复杂波形的分离和分频器 ,如从电视信号的复合同步脉冲分离出行同步脉冲和时钟的倍频应用。

    2. RC耦合电路

      图1中,如果电路时间常数τ(RC)>>tW,他将变成一个RC耦合电路。输出波形与输入波形一样。如图3所示。


     (1)在t=t1时,第一个方波到来,VI由0→Vm,因电容电压不能突变(VC=0),VO=VR=VI=Vm
      (2)t1<t<t2时,因τ>>tW,电容C缓慢充电,VC缓慢上升为左正右负,V O=VR=VI-VC,VO缓慢下降。
      (3)t=t2时,VO由Vm→0,相当于输入端被短路,此时,VC已充有左 正右负电压Δ[Δ=(VI/τ)×tW],经电阻R非常缓慢地放电。
      (4)t=t3时,因电容还来不及放完电,积累了一定电荷,第二个方波到来,电阻上的电 压就不是Vm,而是VR=Vm-VC(VC≠0),这样第二个输出 方波比第一个输出方 波略微往下平移,第三个输出方波比第二个输出方波又略微往下平移,…,最后,当输出波 形的正半周“面积”与负半周“面积”相等时,就达到了稳定状态。也就是电容在一个周期 内充得的电荷与放掉的电荷相等时,输出波形就稳定不再平移,电容上的平均电压等于输入 信号中电压的直流分量(利用C的隔直作用),把输入信号往下平移这个直流分量,便得到 输出波形,起到传送输入信号的交流成分,因此是一个耦合电路。
      以上的微分电路与耦合电路,在电路形式上是一样的,关键是tW与τ的关系,下面比 较一下τ与方波周期T(T>tW)不同时的结果,如图4所示。在这三种情形中,由于电容C的隔直作用,输出波形都是一个周期内正、负“面积”相等,即其平均值为0,不再含有 直流成份。
      ①当τ>>T时,电容C的充放电非常缓慢,其输出波形近似理想方波,是理想耦合电路。 
    ②当τ=T时,电容C有一定的充放电,其输出波形的平顶部分有一定的下降或上升,不是 理想方波。
      ③当τ<<t时,电容C在极短时间内(tW)已充放电完毕,因而输出波形为上下尖脉 冲,是微分电路。


    3. RC积分电路
      如图5所示,电阻R和电容C串联接入输入信号VI,由电容C输出信号V0,当RC (τ)数值与输入方波宽度tW之间满足:τ>>tW,这种电路称为积分电路。在



    电容C两端(输出端)得到锯齿波电压,如图6所示


    (3)t=t2时,VI由Vm→0,相当于输入端被短路,电容原先充有左正右负电 压VI经R缓慢放电,VO(VC)按指数规律下降。 
      这样,输出信号就是锯齿波,近似为三角形波,τ>>tW是本电路必要条件,因为他是 在方波到来期间,电容只是缓慢充电,VC还未上升到Vm时,方波就消失,电容 开始放电,以免电容电压出现一个稳定电压值,而且τ越大,锯齿波越接近三角波。输出波 形是对输入波形积分运算的结果

    ,他是突出输入信号的直流及缓变分量,降低输入信号的变化量。
    4. RC滤波电路(无源)
      在模拟电路,由RC组成的无源滤波电路中,根据电容的接法及大小主要可分为低通滤波 电路(如图7)和高通滤波电路(如图8)。



    (1)在图7的低通滤波电路中,他跟积分电路有些相似(电容C都是并在输出端),但 他们是应 用在不同的电路功能上,积分电路主要是利用电容C充电时的积分作用,在输入方波情形下 ,来产生周期性的锯齿波(三角波),因此电容C及电阻R是根据方波的tW来选取,而 低通滤波电路,是将较高频率的信号旁路掉(因XC=1/(2πfC),f较大时,XC较 小,相当于短路),因而电容C的值是参照低频点的数值来确定,对于电源的滤波电路,理 论上C值愈大愈好。
      (2)图8的高通滤波电路与微分电路或耦合电路形式相同。在脉冲数字电路中,因RC与脉 宽tW的关系不同而区分为微分电路和耦合电路;在模拟电路,选择恰当的电容C值, 就可以有选择性地让较高频的信号通过,而阻断直流及低频信号,如高音喇叭串接的电容, 就是阻止中低音进入高音喇叭,以免烧坏。另一方面,在多级交流放大电路中,他也是一种 耦合电路。
    5. RC脉冲分压器
      当需要将脉冲信号经电阻分压传到下一级时,由于电路中存在各种形式的电容,如寄生电容 ,他相当于在负载侧接有一负载电容(如图9),当输入一脉冲信号时,因电容CL的 充电,电压不能突变,使输出波形前沿变坏,失真。为此,可在R1两端并接一加速电容 C1,这样组成一个RC脉冲分压器(如图10)




    (1)t=0+时,电容视为短路,电流只流经C1,CL,VO由C1和CL分压得到: 


    但是,任何信号源都有一定的内阻,以及一些电路的需要,通常采取过补偿的办法,如电视 信号中,为突出传送图像的轮廓,采用勾边电路,就是通过加大C1的取值。



    展开全文
  • RC电路分析计算

    千次阅读 2020-02-02 21:59:26
    RC电路有一个电容和一个电阻组成,可以是并联或者串联,可用作滤波,移相等。下面以RC串联电路为例计算分析电路的电流电压特性和频率特性。 RC串联电路 如上图所示,假设RC电路电源电压为Us,电容大小为C,电容两...

    RC电路有一个电容和一个电阻组成,可以是并联或者串联,可用作滤波,移相等。下面以RC串联电路为例计算分析电路的电流电压特性和频率特性。

    RC串联电路

    如上图所示,假设RC电路电源电压为Us,电容大小为C,电容两端电压为Uc,电阻大小为R,电阻两端电压为Ur,流过电阻的电流为i,可以建立如下的方程:

    求解上面的方程可以得到:

    这是一个一阶非齐次线性微分方程,假设它齐次方程的通解为Uc1,非齐次方程的一个特解为Uc2,那么非齐次线性方程的通解Uc=Uc1+Uc2;不难发现非齐次方程的一个特解Uc2=Us

    而计算齐次方程的通解可采用分离变量法:

    可以解得齐次方程的通解为,那么非齐次方程的通解,在零初始条件(t=0,Uc=0)下,计算出,则

    下面分析电路的频率特性:

    |H(jw)|表示电路的幅频特性,令Wc=1/RC,根据公式可以画出幅频曲线如下图,可以看出此电路具有低通滤波的特性。

    θ(w)表示电路的相频特性,根据公式可以画出相频曲线如下图,可以看出此电路移相范围为0到-90°。

    其他RC电路可采用类似的分析方法。

    展开全文
  • RC电路(积分电路,微分电路)

    万次阅读 多人点赞 2016-12-01 19:46:02
    RC电路是电阻器电容器电路(RC电路)或者RC过滤器,RC网络是电路a和电容器驾驶的组成由电阻器电压或当前来源.一次RC电路由一个电阻器和一台电容器组成,是RC电路的简单例子。RC电路在模拟电路、脉冲数字电路中得到广泛...
    RC电路是电阻电容器电路(RC电路)或者RC过滤器,RC网络是电路a和电容器驾驶的组成由电阻器电压或当前来源.一次RC电路由一个电阻器和一台电容器组成,是RC电路的简单例子。RC电路在模拟电路、脉冲数字电路中得到广泛的应用。

    目录

    • RC电路的分类
    • RC电路的典型应用
    • RC实用电路
    RC电路

    RC电路的分类

    •   (1)RC 串联电路

      RC 串联电路

        电路的特点:由于有电容存在不能流过直流电流,电阻和电容都对电流存在阻碍作用,其总阻抗由电阻和容抗确定,总阻抗随频率变化而变化。RC 串联有一个转折频率: f0=1/2πR1C1

        当输入信号频率大于 f0 时,整个 RC 串联电路总的阻抗基本不变了,其大小等于 R1。

        (2)RC 并联电路

      RC 并联电路

        RC 并联电路既可通过直流又可通过交流信号。它和 RC 串联电路有着同样的转折频率:f0=1/2πR1C1。 当输入信号频率小于f0时,信号相对电路为直流,电路的总阻抗等于 R1;当输入信号频率大于f0 时 C1 的容抗相对很小,总阻抗为电阻阻值并上电容容抗。当频率高到一定程度后总阻抗为 0。

        (3)RC 串并联电路

      RC 串并联电路

        RC 串并联电路存在两个转折频率f01 和 f02:

        f01=1/2πR2C1, f02=1/2πC1*[R1*R2/(R1+R2)]

        当信号频率低于 f01 时,C1 相当于开路,该电路总阻抗为 R1+R2。

        当信号频率高于 f02 时,C1 相当于短路,此时电路总阻抗为 R1。

        当信号频率高于 f01 低于 f02 时,该电路总阻抗在 R1+R2 到R1之间变化。

     
     
     
    积分电路的作用是:消减变化量,突出不变量。RC电路的积分条件:RC≥Tk,Tk是脉冲周期,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。
    微分电路的作用是:消减不变量,突出变化量。微分电路可把矩形波转换为尖脉冲波,电路的输出波形只反映输入波形的突变部微分电路分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的微分电路1/10就可以了。

     

    在模拟及脉冲数字电路中,常常用到由电阻R和电容C组成的RC电路,在些电路中,电阻R和电容C的取值不同、输入和输出关系以及处理的波形之间的关系,产生了RC电路的不同应用,下面分别谈谈微分电路、积分电路、耦合电路、脉冲分压器以及滤波电路。

      1. RC微分电路

      如图1所示,电阻R和电容C串联后接入输入信号VI,由电阻R输出信号VO,当RC 数值与输入方波宽度tW之间满足:RC<<tW,这种电路就称为微分电路。在 R两端(输出端)得到正、负相间的尖脉冲,而且发生在方波的上升沿和下降沿,如图2 所示。

      

      

      在t=t1时,VI由0→Vm,因电容上电压不能突变(来不及充电,相当于短路,VC=0),输入电压VI全降在电阻R上,即VO=VR=VI=V m 。随后(t》t1),电容C的电压按指数规律快速充电上升,输出电压随之按指数规律下降(因VO=VI-VC=Vm-VC),经过大约3τ(τ=R × C)时,VCVm,VO0,τ(RC)的值愈小,此过程愈快,输出正脉冲愈窄。

      t=t2时,VI由Vm→0,相当于输入端被短路,电容原先充有左正右负的电压V m开始按指数规律经电阻R放电,刚开始,电容C来不及放电,他的左端(正电)接地,所以VO=-Vm,之后VO随电容的放电也按指数规律减小,同样经过大约3τ后,放电完毕,输出一个负脉冲。

      只要脉冲宽度tW>(5~10)τ,在tW时间内,电容C已完成充电或放电(约需3 τ),输出端就能输出正负尖脉冲,才能成为微分电路,因而电路的充放电时间常数τ必须满足:τ<(1/5~1/10)tW,这是微分电路的必要条件。

      由于输出波形VO与输入波形VI之间恰好符合微分运算的结果[VO=RC( dVI/dt)],即输出波形是取输入波形的变化部分。如果将VI按傅里叶级展开,进行微分运算的结果,也将是VO的表达式。他主要用于对复杂波形的分离和分频器,如从电视信号的复合同步脉冲分离出行同步脉冲和时钟的倍频应用。

      2. RC耦合电路

      图1中,如果电路时间常数τ(RC)>>tW,他将变成一个RC耦合电路。输出波形与输入波形一样。如图3所示。

      

      (1)在t=t1时,第一个方波到来,VI由0→Vm,因电容电压不能突变(VC=0),VO=VR=VI=Vm。

      (2)t1<t<t2时,因τ>>tW,电容C缓慢充电,VC缓慢上升为左正右负,V O=VR=VI-VC,VO缓慢下降。

      (3)t=t2时,VO由Vm→0,相当于输入端被短路,此时,VC已充有左正右负电压Δ[Δ=(VI/τ)×tW],经电阻R非常缓慢地放电。

      (4)t=t3时,因电容还来不及放完电,积累了一定电荷,第二个方波到来,电阻上的电压就不是Vm,而是VR=Vm-VC(VC≠0),这样第二个输出方波比第一个输出方波略微往下平移,第三个输出方波比第二个输出方波又略微往下平移,…,最后,当输出波形的正半周“面积”与负半周“面积”相等时,就达到了稳定状态。也就是电容在一个周期内充得的电荷与放掉的电荷相等时,输出波形就稳定不再平移,电容上的平均电压等于输入信号中电压的直流分量(利用C的隔直作用),把输入信号往下平移这个直流分量,便得到输出波形,起到传送输入信号的交流成分,因此是一个耦合电路。

      以上的微分电路与耦合电路,在电路形式上是一样的,关键是tW与τ的关系,下面比较一下τ与方波周期T(T》tW)不同时的结果,如图4所示。在这三种情形中,由于电容C的隔直作用,输出波形都是一个周期内正、负“面积”相等,即其平均值为0,不再含有直流成份。

      ①当τ>>T时,电容C的充放电非常缓慢,其输出波形近似理想方波,是理想耦合电路。

      ②当τ=T时,电容C有一定的充放电,其输出波形的平顶部分有一定的下降或上升,不是 理想方波。

      ③当τ<<T时,电容C在极短时间内(tW)已充放电完毕,因而输出波形为上下尖脉冲,是微分电路。

      

    3. RC积分电路

      如图5所示,电阻R和电容C串联接入输入信号VI,由电容C输出信号V0,当RC (τ)数值与输入方波宽度tW之间满足:τ》》tW,这种电路称为积分电路。在

      

      

      电容C两端(输出端)得到锯齿波电压,如图6所示。

      

      (3)t=t2时,VI由Vm→0,相当于输入端被短路,电容原先充有左正右负电压VI(VI《Vm)经R缓慢放电,VO(VC)按指数规律下降。

      这样,输出信号就是锯齿波,近似为三角形波,τ》》tW是本电路必要条件,因为他是在方波到来期间,电容只是缓慢充电,VC还未上升到Vm时,方波就消失,电容开始放电,以免电容电压出现一个稳定电压值,而且τ越大,锯齿波越接近三角波。输出波形是对输入波形积分运算的结果,他是突出输入信号的直流及缓变分量,降低输入信号的变化量。

      4. RC滤波电路(无源)

      在模拟电路,由RC组成的无源滤波电路中,根据电容的接法及大小主要可分为低通滤波电路(如图7)和高通滤波电路(如图8)。

      

      

      (1)在图7的低通滤波电路中,他跟积分电路有些相似(电容C都是并在输出端),但他们是应用在不同的电路功能上,积分电路主要是利用电容C充电时的积分作用,在输入方波情形下,来产生周期性的锯齿波(三角波),因此电容C及电阻R是根据方波的tW来选取,而低通滤波电路,是将较高频率的信号旁路掉(因XC=1/(2πfC),f较大时,XC较小,相当于短路),因而电容C的值是参照低频点的数值来确定,对于电源的滤波电路,理论上C值愈大愈好。

      (2)图8的高通滤波电路与微分电路或耦合电路形式相同。在脉冲数字电路中,因RC与脉宽tW的关系不同而区分为微分电路和耦合电路;在模拟电路,选择恰当的电容C值,就可以有选择性地让较高频的信号通过,而阻断直流及低频信号,如高音喇叭串接的电容,就是阻止中低音进入高音喇叭,以免烧坏。另一方面,在多级交流放大电路中,他也是一种耦合电路。

      5. RC脉冲分压器

      当需要将脉冲信号经电阻分压传到下一级时,由于电路中存在各种形式的电容,如寄生电容,他相当于在负载侧接有一负载电容(如图9),当输入一脉冲信号时,因电容CL的充电,电压不能突变,使输出波形前沿变坏,失真。为此,可在R1两端并接一加速电容 C1,这样组成一个RC脉冲分压器(如图10)。

      

      

      

      (1)t=0+时,电容视为短路,电流只流经C1,CL,VO由C1和CL分压得到:

      

      但是,任何信号源都有一定的内阻,以及一些电路的需要,通常采取过补偿的办法,如电视信号中,为突出传送图像的轮廓,采用勾边电路,就是通过加大C1的取值。

      求RC电路的放电时间为1分锺,电压从9V降到5v.放电电流为300mA左右,选择最佳的的R值和C值。

      RC电路的放电方程是:UC=US*e-t/RC,其中,US=9,UC=5,t=60,代入公式可求出时间常数RC的值,现在关键的就是要确定R和C的值了,它只能通过你所要求的放电电路来选择了,由放电电流公式:I=C*dU/dt,再将此公式代入上面的公式中可得:I=-US*C/RCe-t/RC,将C看成一个未知参数,然后作出I-t曲线,计算出该曲线与直线I=300所围成的面积,这个积分上下限为t=0-60,去使面积最小的C值就可.

    转载于http://blog.sina.com.cn/s/blog_710b9b8a0100wmor.html

    展开全文
  • RC电路知识讲解

    千次阅读 多人点赞 2020-04-11 20:51:50
    RC电路是指由电阻R和电容C组成的电路,他是脉冲产生和整形电路中常用的电路。1.RC 1.RC充电电路 电源通过电阻给电容充电,由于一开始电容两端的电压为0,所以电压的电压都在电阻上,这时电流大,充电速度快。随着...

    RC电路是指由电阻R和电容C组成的电路,他是脉冲产生和整形电路中常用的电路。1.RC
    1.RC充电电路

    在这里插入图片描述电源通过电阻给电容充电,由于一开始电容两端的电压为0,所以电压的电压都在电阻上,这时电流大,充电速度快。随着电容两端电压的上升,电阻两端的电压下降,电流也随之减小,充电速度变小。

    在这里插入图片描述

    充电的速度与电阻和电容的大小有关。电阻R越大,充电越慢,电容C越大,充电越慢。衡量充电速度的常数t(tao)=RC。
    2.RC放电电路

    在这里插入图片描述

    电容C通过电阻R放电,由于电容刚开始放电时电压为E,放电电流I=E/R,改电流很大,所以放电速度很快。随着电容不断的放电,电容的电压也随着下降。电流也很快减小。
    电容的放电速度与RC有关,R的阻值越大,放电速度越慢。电容越大,放电速度越慢。
    在这里插入图片描述
    3.RC积分电路
    RC积分电路可以将矩形波转变成三角波(或锯齿波)。
    在这里插入图片描述

    电路工作原理:
    在0-t1时间,矩形波为低电平,无电压对电容进行充电,所以输出电压为0。
    在t1-t2时间,矩形波为高电平,有电压对电容进行充电,输出电压慢慢上升,由于时间常数tao=RC远大于脉冲的宽度tw,所以t2时间,输出电压无法到达高电平Vm。
    在t2-t4时间,矩形波为低电平,电容C开始放电。
    积分电路应该满足时间常数tao=RC远大于脉冲的宽度tw,一般大于3tw就行。
    在这里插入图片描述
    4.RC微分电路
    RC微分电路可以将矩形波转化为宽度很窄的尖峰脉冲信号。

    在这里插入图片描述

    电路工作原理:
    在0-t1时间里,矩形波为低电平,输入电压为0,无电流流过电容和电阻,所以电阻两端电压为0.
    在t1-t2时间里,矩形波为高电平,输入电压为Vm,这时电容还没被充电,所以电阻两端电压为Vm,t1以后,电容开始充电,电阻两端的电压也随之下降。由于时间常数很小,所以电容很快就充电完成,电容电压上升到Vm,电阻电压为0。
    在t2-t3时间,矩形波为低电平,输入电压为0,电容相当于一个电源,电阻得到一个下正上负的电压,随着电容的放电,电阻两端的电压也下降。

    在这里插入图片描述

    展开全文
  • RC振荡电路

    万次阅读 2016-04-13 12:53:18
    RC电路是电阻器电容器电路(RC电路)或者RC过滤器,RC网络是电路a和电容器驾驶的组成由电阻器电压或当前来源.一次RC电路由一个电阻器和一台电容器组成,是RC电路的简单例子。RC电路在模拟电路、脉冲数字电路中得到广泛...
  • RC吸收电路的设计

    万次阅读 2019-06-29 15:31:08
    PWM DC/DC变换器中吸收电路的主要作用如下: 将开关管的电压、电流和功耗限制在安全工作区域(SOA)以内。 保证开关管在开、关过程中du/dt、di/dt足够小,限制开关管上的电压或电流峰值,从而保证开关管正确可靠地...
  • 一、简单的RC电路分析 根据电容公式可得 以上微分方程的解: 推导过程如下: 充满电的C与电阻R并联之后将放电,放电曲线是: 5RC经验准则是:当t>>5RC时,V充电/放电到最终值的1%左右。 RC乘积...
  • RC串联典型电路: 1、充电 充电时涉及的公式: 充电时的电路关系变化: 2、放电 放点时电阻两端的电压(与电容两端电压绝对值相同)表达式: ...因此,t可作为反映RC电路充放电速度快慢的特征值。 ...
  • RC电路 波形分析

    千次阅读 2019-01-08 16:27:04
    在模拟及脉冲数字电路中,常常用到由电阻R和电容C组成的RC电路,在些电路中, 电阻R和电容C的取值不同、输入和输出关系以及处理的波形之间的关系,产生了RC电路的 不同应用,下面分别谈谈微分电路、积分电路、耦合...
  • RC电路耦合、相移、滤波、微分 所谓RC电路,就是电阻R和电容C组成的一种分压电路。如下图1所示:输入电压加于RC串联电路两端,输出电压取自于电阻R或电容 C。由于电容的特殊性质,对下图 (a)和 (b)不同的输出电压取...
  • RC串并联电路工作原理

    万次阅读 2019-03-25 16:08:25
    一个最简单的RC电路是由一个电容器和一个电阻器组成的,称为一阶RC电路。 二、RC串联电路   1、解释。如下图所示,输入电压加于RC串联电路两端,输出电压取自于电阻R或电容C。由于电容的特殊性质,对下图(a...
  • 四种π型RC滤波电路

    万次阅读 2018-08-14 09:20:51
    1.典型π型RC滤波电路  图7-27所示是典型的兀型RC滤波电路电路中的Cl、C2是两只滤波电容,Rl是滤波电阻,Cl、Rl和C2构成一节π型RC滤波电路。由于这种滤波电路的形式如同字母π且采用了电阻、电容,所以称为π型...
  • RC电路时间常数的定义及计算

    万次阅读 2019-03-22 17:23:34
    时间常数表示过渡反应的时间过程的常数。指该物理量从最大值衰减到最大值的1/e所需要的时间。...RC的时间常数:表示过渡反应的时间过程的常数。在电阻、电容的电路中,它是电阻和电容的乘积。若C的单位...
  • RC串联延时电路电容充电时间计算

    万次阅读 热门讨论 2018-07-16 10:57:03
    电路设计中经常会用到将电阻和电容正极连接,电阻另一端接上电源,电容负极接地。电阻和电容连接点为功能点,常用于延时驱动晶体管或是使能IC。 根据系统设计意图,可能需要计算R和C的取值,或是在确定RC的情况...
  • 电容C的阻抗为1/(jωC),所以电容上的分压... = 1/(1+jωRC) 则: ||Av|| = (|1|) / (||1+jωRC||)  = 1 / SQRT[1+(ωRC)^2] 折转频率的定义是||Av||=1/SQRT(2)处,由上式得: (ωRC)^2 = 1 ωRC = 1 ω =
  • RC延时电路延时计算

    万次阅读 2018-07-31 18:41:53
    图一是最简单的RC延时电路,目的是延时点亮LED。R1给C1充电,等电容电压到达三极管基极导通电压大概0.7V时,三极管开通,LED点亮,二极管D1是让C1可以快速放电的作用。   延时时间 ,其中V1为电源电压,V0为...
  • PWM+RC电路分析

    千次阅读 2010-11-21 20:06:00
    电路仿真与分析设计PWM波RC滤波电路时,应根据响应时间要求,确定时间常数,并且使RC时间常数远大于PWM周期。RC充放电时间常数应尽量相等。此外还应根据电压精度要求确定RC参数。输出电压 = PWM电压 *占空比如上图 ...
  • RC复位电路中二极管的作用

    千次阅读 2017-09-27 11:26:55
    图中所示的RC复位电路中二极管的作用:  复位电路中,放电二极管D不可缺少。当电源断电后,电容通过二极管D迅速放电,待电源恢复时便可实现可靠上电自动复位。若没有二极管D,当电源因某种干扰瞬间断电时,由于C不...
  • RC充放电电路

    千次阅读 2015-05-05 14:00:30
    RC充放电电路是电阻器应用的基础电路,在电子电路中会常常见到,因此了解RC充放电特性是非常有用的。  RC充放电电路如图1所示。图申开关S原来停留在B点位置,电容器C上没有电荷,它两端的电压等于零。当开关接到A...
  • RC延时电路简要分析

    万次阅读 2013-12-21 09:37:55
    延时电路经常会用到,最简单的就是RC电路。图一是最简单的RC延时电路,目的是延时点亮LED。R1给C1充电,等电容电压到达三极管基极导通电压大概0.7V时,三极管开通,LED点亮,二极管D1是让C1可以快速放电的作用。 ...
1 2 3 4 5 ... 20
收藏数 10,690
精华内容 4,276
关键字:

rc电路