卷积_标准卷积 深度卷积 分组卷积 - CSDN
卷积 订阅
在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。 展开全文
在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。
信息
外文名
Convolution
定    义
分析数学中一种重要的运算
其    他
可以被看作是“滑动平均”的推广
中文名
卷积
卷积简介
褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大 [1]  。
收起全文
  • 什么是卷积

    2018-06-27 15:15:23
    对于初学者,我推荐用复利的例子来理解卷积可能更好理解一些:小明存入100元钱,年利率是5%,按复利计算(即将每一年所获利息加入本金,以计算下一年的利息),那么在五年之后他能拿到的钱数是,...
    理解1:
    作者:果程C
    链接:https://www.zhihu.com/question/22298352/answer/50940942
    来源:知乎
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

    对于初学者,我推荐用复利的例子来理解卷积可能更好理解一些:

    小明存入100元钱,年利率是5%,按复利计算(即将每一年所获利息加入本金,以计算下一年的利息),那么在五年之后他能拿到的钱数是100(1+5\%)^5,如下表所示:

    <img src="https://pic2.zhimg.com/5fa86c80c31dd277d038527555aa4d75_b.jpg" data-rawwidth="1293" data-rawheight="95" class="origin_image zh-lightbox-thumb" width="1293" data-original="https://pic2.zhimg.com/5fa86c80c31dd277d038527555aa4d75_r.jpg">将这笔钱存入银行的一年之后,小明又往银行中存入了100元钱,年利率仍为5%,那么这笔钱按复利计算,到了第五年,将收回的钱数是100(1+5\%)^4,我们将这一结果作为新的一行加入上面的表格中:
    <img src="https://pic4.zhimg.com/39f37df8c96d7219cba5d081919a3a2f_b.jpg" data-rawwidth="1296" data-rawheight="134" class="origin_image zh-lightbox-thumb" width="1296" data-original="https://pic4.zhimg.com/39f37df8c96d7219cba5d081919a3a2f_r.jpg">以此类推,如果小明每年都往银行中存入新的100元钱,那么这个收益表格将是这样的:
    <img src="https://pic2.zhimg.com/cfe98b9d33640fae02a21bf369f0459d_b.jpg" data-rawwidth="1296" data-rawheight="284" class="origin_image zh-lightbox-thumb" width="1296" data-original="https://pic2.zhimg.com/cfe98b9d33640fae02a21bf369f0459d_r.jpg">可见,最终小明拿到的钱将等于他各年存入的钱分别计算复利之后得到的钱数的总和,即:
    <img src="https://pic3.zhimg.com/fba65159d3472936979002b01b606a0e_b.jpg" data-rawwidth="1077" data-rawheight="124" class="origin_image zh-lightbox-thumb" width="1077" data-original="https://pic3.zhimg.com/fba65159d3472936979002b01b606a0e_r.jpg">用求和符号来简化这个公式,可以得到:
    \sum_{i=0}^{5}{f(i)g(5-i)}, \mathrm{where} \ f(i)=100, g(5-i) = (1.05)^{5-i}
    在上式中,f(i)为小明的存钱函数,而g(i)为存入银行的每一笔钱的复利计算函数在这里,小明最终得到的钱就是他的存钱函数和复利计算函数的卷积。
    为了更清晰地看到这一点,我们将这个公式推广到连续的情况,也就是说,小明在从0t的这一段时间内,每时每刻都往银行里存钱,他的存钱函数为f(\tau)\ (0\leq \tau\leq t),而银行也对他存入的每一笔钱按复利公式计算收益:g(t-\tau)=(1+5\%)^{t-\tau},则小明到时间t将得到的总钱数为:
    \int_{0}^{t} f(\tau)g(t-\tau)d\tau=\int_{0}^{t} f(\tau)(1+5\%)^{t-\tau}d\tau
    这也就是卷积的表达式了,上式可以记为(f\ast g)(t)

    相信通过上面这个例子,大家应该能够很清晰地记住卷积公式了。下面我们再展开说两句:
    如果我们将小明的存款函数视为一个信号发生(也就是激励)的过程,而将复利函数g(t-\tau)视为一个系统对信号的响应函数(也就是响应),那么二者的卷积(f\ast g)(t)就可以看做是在t时刻对系统进行观察,得到的观察结果(也就是输出)将是过去产生的所有信号经过系统的「处理/响应」后得到的结果的叠加,这也就是卷积的物理意义了。

    理解2:




     
















    此图出处:Convolutional Neural Networks - Basics

    理解3:

    这个其实非常简单的概念,国内的大多数教材却没有讲透。

    直接看图,不信看不懂。以离散信号为例,连续信号同理。

    已知x[0] = a, x[1] = b, x[2]=c

    已知y[0] = i, y[1] = j, y[2]=k

    下面通过演示求x[n] * y[n]的过程,揭示卷积的物理意义。

    第一步,x[n]乘以y[0]并平移到位置0:


    第二步,x[n]乘以y[1]并平移到位置1:

    第三步,x[n]乘以y[2]并平移到位置2:

    最后,把上面三个图叠加,就得到了x[n] * y[n]

    简单吧?无非是平移(没有反褶!)、叠加。

    ====================================================

    从这里,可以看到卷积的重要的物理意义是:一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。


    重复一遍,这就是卷积的意义:加权叠加

    对于线性时不变系统,如果知道该系统的单位响应,那么将单位响应和输入信号求卷积,就相当于把输入信号的各个时间点的单位响应 加权叠加,就直接得到了输出信号。


    通俗的说:
    在输入信号的每个位置,叠加一个单位响应,就得到了输出信号。
    这正是单位响应是如此重要的原因。

    在输入信号的每个位置,叠加一个单位响应,就得到了输出信号。
    这正是单位响应是如此重要的原因。

    在输入信号的每个位置,叠加一个单位响应,就得到了输出信号。
    这正是单位响应是如此重要的原因。

    展开全文
  • 本课程主要介绍人工智能模型中,卷积神经网络的基础内容和应用。主要包括卷积神经网络的基础概念,梯度计算,反向传播,网络训练等方面的内容。最终,学员们会使用课程中学到的内容解决经典的mnist数字识别问题。
  • 通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 1 前言 2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有...

                   通俗理解卷积神经网络(cs231n与5月dl班课程笔记)

     

     

     

    1 前言

        2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。

        本博客内写过一些机器学习相关的文章,但上一篇技术文章“LDA主题模型”还是写于2014年11月份,毕竟自2015年开始创业做在线教育后,太多的杂事、琐碎事,让我一直想再写点技术性文章但每每恨时间抽不开。然由于公司在不断开机器学习、深度学习等相关的在线课程,耳濡目染中,总会顺带着学习学习。

        我虽不参与讲任何课程(我所在公司“七月在线”的所有在线课程都是由目前讲师团队的100多位讲师讲),但依然可以用最最小白的方式 把一些初看复杂的东西抽丝剥茧的通俗写出来。这算重写技术博客的价值所在。

        在dl中,有一个很重要的概念,就是卷积神经网络CNN,基本是入门dl必须搞懂的东西。本文基本根据斯坦福的机器学习公开课、cs231n、与七月在线寒小阳讲的5月dl班所写,是一篇课程笔记。

        一开始本文只是想重点讲下CNN中的卷积操作具体是怎么计算怎么操作的,但后面不断补充,包括增加不少自己的理解,故写成了关于卷积神经网络的通俗导论性的文章。有何问题,欢迎不吝指正。

     

     

    2 人工神经网络

    2.1 神经元

        神经网络由大量的神经元相互连接而成。每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出。每两个神经元之间的连接代表加权值,称之为权重(weight)。不同的权重和激活函数,则会导致神经网络不同的输出。

        举个手写识别的例子,给定一个未知数字,让神经网络识别是什么数字。此时的神经网络的输入由一组被输入图像的像素所激活的输入神经元所定义。在通过非线性激活函数进行非线性变换后,神经元被激活然后被传递到其他神经元。重复这一过程,直到最后一个输出神经元被激活。从而识别当前数字是什么字。

        神经网络的每个神经元如下

        基本wx + b的形式,其中

    • 表示输入向量
    • 为权重,几个输入则意味着有几个权重,即每个输入都被赋予一个权重
    • b为偏置bias
    • g(z) 为激活函数
    • a 为输出

        如果只是上面这样一说,估计以前没接触过的十有八九又必定迷糊了。事实上,上述简单模型可以追溯到20世纪50/60年代的感知器,可以把感知器理解为一个根据不同因素、以及各个因素的重要性程度而做决策的模型。

        举个例子,这周末北京有一草莓音乐节,那去不去呢?决定你是否去有二个因素,这二个因素可以对应二个输入,分别用x1、x2表示。此外,这二个因素对做决策的影响程度不一样,各自的影响程度用权重w1、w2表示。一般来说,音乐节的演唱嘉宾会非常影响你去不去,唱得好的前提下 即便没人陪同都可忍受,但如果唱得不好还不如你上台唱呢。所以,我们可以如下表示:

    • :是否有喜欢的演唱嘉宾。 = 1 你喜欢这些嘉宾, = 0 你不喜欢这些嘉宾。嘉宾因素的权重 = 7
    • :是否有人陪你同去。 = 1 有人陪你同去, = 0 没人陪你同去。是否有人陪同的权重 = 3。

        这样,咱们的决策模型便建立起来了:g(z) = g( * + * + b ),g表示激活函数,这里的b可以理解成 为更好达到目标而做调整的偏置项。

        一开始为了简单,人们把激活函数定义成一个线性函数,即对于结果做一个线性变化,比如一个简单的线性激活函数是g(z) = z,输出都是输入的线性变换。后来实际应用中发现,线性激活函数太过局限,于是人们引入了非线性激活函数。

    2.2 激活函数

        常用的非线性激活函数有sigmoid、tanhrelu等等,前两者sigmoid/tanh比较常见于全连接层,后者relu常见于卷积层。这里先简要介绍下最基础的sigmoid函数(btw,在本博客中SVM那篇文章开头有提过)。

        sigmoid的函数表达式如下

        其中z是一个线性组合,比如z可以等于:b + * + *通过代入很大的正数或很小的负数到g(z)函数中可知,其结果趋近于0或1

        因此,sigmoid函数g(z)的图形表示如下( 横轴表示定义域z,纵轴表示值域g(z) ):

        也就是说,sigmoid函数的功能是相当于把一个实数压缩至0到1之间。当z是非常大的正数时,g(z)会趋近于1,而z是非常小的负数时,则g(z)会趋近于0

        压缩至0到1有何用处呢?用处是这样一来便可以把激活函数看作一种“分类的概率”,比如激活函数的输出为0.9的话便可以解释为90%的概率为正样本。

        举个例子,如下图(图引自Stanford机器学习公开课

        z = b + * + *,其中b为偏置项 假定取-30,都取为20

    • 如果 = 0  = 0,则z = -30,g(z) = 1/( 1 + e^-z )趋近于0。此外,从上图sigmoid函数的图形上也可以看出,当z=-30的时候,g(z)的值趋近于0
    • 如果 = 0 = 1,或 =1 = 0,则z = b + * + * = -30 + 20 = -10,同样,g(z)的值趋近于0
    • 如果 = 1 = 1,则z = b + * + * = -30 + 20*1 + 20*1 = 10,此时,g(z)趋近于1。

        换言之,只有都取1的时候,g(z)→1,判定为正样本;取0的时候,g(z)→0,判定为负样本如此达到分类的目的。

    2.3 神经网络

        将下图的这种单个神经元

        组织在一起,便形成了神经网络。下图便是一个三层神经网络结构

        上图中最左边的原始输入信息称之为输入层,最右边的神经元称之为输出层(上图中输出层只有一个神经元),中间的叫隐藏层。

        啥叫输入层、输出层、隐藏层呢?

    • 输入层(Input layer),众多神经元(Neuron)接受大量非线形输入讯息。输入的讯息称为输入向量。
    • 输出层(Output layer),讯息在神经元链接中传输、分析、权衡,形成输出结果。输出的讯息称为输出向量。
    • 隐藏层(Hidden layer),简称“隐层”,是输入层和输出层之间众多神经元和链接组成的各个层面。如果有多个隐藏层,则意味着多个激活函数。

        同时,每一层都可能由单个或多个神经元组成,每一层的输出将会作为下一层的输入数据。比如下图中间隐藏层来说,隐藏层的3个神经元a1、a2、a3皆各自接受来自多个不同权重的输入(因为有x1、x2、x3这三个输入,所以a1 a2 a3都会接受x1 x2 x3各自分别赋予的权重,即几个输入则几个权重),接着,a1、a2、a3又在自身各自不同权重的影响下 成为的输出层的输入,最终由输出层输出最终结果。

        上图(图引自Stanford机器学习公开课)中

    • 表示第j层第i个单元的激活函数/神经元
    • 表示从第j层映射到第j+1层的控制函数的权重矩阵 

        此外,输入层和隐藏层都存在一个偏置(bias unit),所以上图中也增加了偏置项:x0、a0。针对上图,有如下公式

        此外,上文中讲的都是一层隐藏层,但实际中也有多层隐藏层的,即输入层和输出层中间夹着数层隐藏层,层和层之间是全连接的结构,同一层的神经元之间没有连接。

     

     

    3 卷积神经网络之层级结构

       cs231n课程里给出了卷积神经网络各个层级结构,如下图

        上图中CNN要做的事情是:给定一张图片,是车还是马未知,是什么车也未知,现在需要模型判断这张图片里具体是一个什么东西,总之输出一个结果:如果是车 那是什么车

        所以

    • 最左边是数据输入层,对数据做一些处理,比如去均值(把输入数据各个维度都中心化为0,避免数据过多偏差,影响训练效果)、归一化(把所有的数据都归一到同样的范围)、PCA/白化等等。CNN只对训练集做“去均值”这一步。

        中间是

    • CONV:卷积计算层,线性乘积 求和。
    • RELU:激励层,上文2.2节中有提到:ReLU是激活函数的一种。
    • POOL:池化层,简言之,即取区域平均或最大。

        最右边是

    • FC:全连接层

        这几个部分中,卷积计算层是CNN的核心,下文将重点阐述。


    4 CNN之卷积计算层

    4.1 CNN怎么进行识别
       简言之,当我们给定一个"X"的图案,计算机怎么识别这个图案就是“X”呢?一个可能的办法就是计算机存储一张标准的“X”图案,然后把需要识别的未知图案跟标准"X"图案进行比对,如果二者一致,则判定未知图案即是一个"X"图案。

       而且即便未知图案可能有一些平移或稍稍变形,依然能辨别出它是一个X图案。如此,CNN是把未知图案和标准X图案一个局部一个局部的对比,如下图所示 [图来自参考文案25]


    而未知图案的局部和标准X图案的局部一个一个比对时的计算过程,便是卷积操作。卷积计算结果为1表示匹配,否则不匹配。

    具体而言,为了确定一幅图像是包含有"X"还是"O",相当于我们需要判断它是否含有"X"或者"O",并且假设必须两者选其一,不是"X"就是"O"。



    理想的情况就像下面这个样子:

    标准的"X"和"O",字母位于图像的正中央,并且比例合适,无变形

    对于计算机来说,只要图像稍稍有一点变化,不是标准的,那么要解决这个问题还是不是那么容易的:


    计算机要解决上面这个问题,一个比较天真的做法就是先保存一张"X"和"O"的标准图像(就像前面给出的例子),然后将其他的新给出的图像来和这两张标准图像进行对比,看看到底和哪一张图更匹配,就判断为哪个字母。

    但是这么做的话,其实是非常不可靠的,因为计算机还是比较死板的。在计算机的“视觉”中,一幅图看起来就像是一个二维的像素数组(可以想象成一个棋盘),每一个位置对应一个数字。在我们这个例子当中,像素值"1"代表白色,像素值"-1"代表黑色。


    当比较两幅图的时候,如果有任何一个像素值不匹配,那么这两幅图就不匹配,至少对于计算机来说是这样的。

    对于这个例子,计算机认为上述两幅图中的白色像素除了中间的3*3的小方格里面是相同的,其他四个角上都不同:


    因此,从表面上看,计算机判别右边那幅图不是"X",两幅图不同,得出结论:


    但是这么做,显得太不合理了。理想的情况下,我们希望,对于那些仅仅只是做了一些像平移,缩放,旋转,微变形等简单变换的图像,计算机仍然能够识别出图中的"X"和"O"。就像下面这些情况,我们希望计算机依然能够很快并且很准的识别出来:


    这也就是CNN出现所要解决的问题。

    Features


    对于CNN来说,它是一块一块地来进行比对。它拿来比对的这个“小块”我们称之为Features(特征)。在两幅图中大致相同的位置找到一些粗糙的特征进行匹配,CNN能够更好的看到两幅图的相似性,相比起传统的整幅图逐一比对的方法。

    每一个feature就像是一个小图(就是一个比较小的有值的二维数组)。不同的Feature匹配图像中不同的特征。在字母"X"的例子中,那些由对角线和交叉线组成的features基本上能够识别出大多数"X"所具有的重要特征。


    这些features很有可能就是匹配任何含有字母"X"的图中字母X的四个角和它的中心。那么具体到底是怎么匹配的呢?如下:






    看到这里是不是有了一点头目呢。但其实这只是第一步,你知道了这些Features是怎么在原图上面进行匹配的。但是你还不知道在这里面究竟进行的是怎样的数学计算,比如这个下面3*3的小块到底干了什么?


    这里面的数学操作,就是我们常说的“卷积”操作。接下来,我们来了解下什么是卷积操作。

    4.2 什么是卷积

        对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源。

        非严格意义上来讲,下图中红框框起来的部分便可以理解为一个滤波器,即带着一组固定权重的神经元。多个滤波器叠加便成了卷积层。

        OK,举个具体的例子。比如下图中,图中左边部分是原始输入数据,图中中间部分是滤波器filter,图中右边是输出的新的二维数据。

        分解下上图

    对应位置上是数字先相乘后相加 =

        中间滤波器filter与数据窗口做内积,其具体计算过程则是:4*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*0 + 0*1 + -4*2 = -8

    4.3 图像上的卷积

        在下图对应的计算过程中,输入是一定区域大小(width*height)的数据,和滤波器filter(带着一组固定权重的神经元)做内积后等到新的二维数据。

        具体来说,左边是图像输入,中间部分就是滤波器filter(带着一组固定权重的神经元),不同的滤波器filter会得到不同的输出数据,比如颜色深浅、轮廓。相当于如果想提取图像的不同特征,则用不同的滤波器filter,提取想要的关于图像的特定信息:颜色深浅或轮廓。

        如下图所示

      

     

    4.4 GIF动态卷积图

        在CNN中,滤波器filter(带着一组固定权重的神经元)对局部输入数据进行卷积计算。每计算完一个数据窗口内的局部数据后,数据窗口不断平移滑动,直到计算完所有数据。这个过程中,有这么几个参数: 
      a. 深度depth:神经元个数,决定输出的depth厚度。同时代表滤波器个数。
      b. 步长stride:决定滑动多少步可以到边缘。

      c. 填充值zero-padding:在外围边缘补充若干圈0,方便从初始位置以步长为单位可以刚好滑倒末尾位置,通俗地讲就是为了总长能被步长整除。 

      这里写图片描述 

        cs231n课程中有一张卷积动图,貌似是用d3js 和一个util 画的,我根据cs231n的卷积动图依次截取了18张图,然后用一gif 制图工具制作了一gif 动态卷积图。如下gif 图所示

        可以看到:

    • 两个神经元,即depth=2,意味着有两个滤波器。
    • 数据窗口每次移动两个步长取3*3的局部数据,即stride=2。
    • zero-padding=1。

        然后分别以两个滤波器filter为轴滑动数组进行卷积计算,得到两组不同的结果。

        如果初看上图,可能不一定能立马理解啥意思,但结合上文的内容后,理解这个动图已经不是很困难的事情:

    • 左边是输入(7*7*3中,7*7代表图像的像素/长宽,3代表R、G、B 三个颜色通道)
    • 中间部分是两个不同的滤波器Filter w0、Filter w1
    • 最右边则是两个不同的输出

        随着左边数据窗口的平移滑动,滤波器Filter w0 / Filter w1对不同的局部数据进行卷积计算。

        值得一提的是:

    1. 左边数据在变化,每次滤波器都是针对某一局部的数据窗口进行卷积,这就是所谓的CNN中的局部感知机制。
    • 打个比方,滤波器就像一双眼睛,人类视角有限,一眼望去,只能看到这世界的局部。如果一眼就看到全世界,你会累死,而且一下子接受全世界所有信息,你大脑接收不过来。当然,即便是看局部,针对局部里的信息人类双眼也是有偏重、偏好的。比如看美女,对脸、胸、腿是重点关注,所以这3个输入的权重相对较大。

    与此同时,数据窗口滑动,导致输入在变化,但中间滤波器Filter w0的权重(即每个神经元连接数据窗口的权重)是固定不变的,这个权重不变即所谓的CNN中的参数(权重)共享机制。

    • 再打个比方,某人环游全世界,所看到的信息在变,但采集信息的双眼不变。btw,不同人的双眼 看同一个局部信息 所感受到的不同,即一千个读者有一千个哈姆雷特,所以不同的滤波器 就像不同的双眼,不同的人有着不同的反馈结果。

        我第一次看到上面这个动态图的时候,只觉得很炫,另外就是据说计算过程是“相乘后相加”,但到底具体是个怎么相乘后相加的计算过程 则无法一眼看出,网上也没有一目了然的计算过程。本文来细究下。

        首先,我们来分解下上述动图,如下图

        接着,我们细究下上图的具体计算过程。即上图中的输出结果1具体是怎么计算得到的呢?其实,类似wx + b,w对应滤波器Filter w0,x对应不同的数据窗口,b对应Bias b0,相当于滤波器Filter w0与一个个数据窗口相乘再求和后,最后加上Bias b0得到输出结果1,如下过程所示:

    1* 0 + 1*0 + -1*

    +

    -1*0 + 0*0 + 1*1

    +

    -1*0 + -1*0 + 0*1

     

    +

    -1*0 + 0*0 + -1*0

    +

    0*0 + 0*1 + -1*1

    +

    1*0 + -1*0 + 0*2

     

    +

    0*0 + 1*0 + 0*0

    +

    1*0 + 0*2 + 1*0

    +

    0*0 + -1*0 + 1*0

     

    +

     

    1

    =

    1

        然后滤波器Filter w0固定不变,数据窗口向右移动2步,继续做内积计算,得到0的输出结果

        最后,换做另外一个不同的滤波器Filter w1、不同的偏置Bias b1,再跟图中最左边的数据窗口做卷积,可得到另外一个不同的输出。

     

     

    5 CNN之激励层与池化层

    5.1 ReLU激励层

        2.2节介绍了激活函数sigmoid,但实际梯度下降中,sigmoid容易饱和、造成终止梯度传递,且没有0中心化。咋办呢,可以尝试另外一个激活函数:ReLU,其图形表示如下

        ReLU的优点是收敛快,求梯度简单。

    5.2 池化pool层

        前头说了,池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n)

        上图所展示的是取区域最大,即上图左边部分中 左上角2x2的矩阵中6最大,右上角2x2的矩阵中8最大,左下角2x2的矩阵中3最大,右下角2x2的矩阵中4最大,所以得到上图右边部分的结果:6 8 3 4。很简单不是?

     

     

    6 后记

        本文基本上边看5月dl班寒讲的CNN视频边做笔记,之前断断续续看过不少CNN相关的资料(包括cs231n),但看过视频之后,才系统了解CNN到底是个什么东西,作为听众 寒讲的真心赞、清晰。然后在写CNN相关的东西时,发现一些前置知识(比如神经元、多层神经网络等也需要介绍下),包括CNN的其它层次机构(比如激励层),所以本文本只想简要介绍下卷积操作的,但考虑到知识之间的前后关联,所以越写越长,便成本文了。

        此外,在写作本文的过程中,请教了我们讲师团队里的寒、冯两位,感谢他两。同时,感谢爱可可老师的微博转发,感谢七月在线所有同事。

    以下是修改日志:

    • 2016年7月5日,修正了一些笔误、错误,以让全文更通俗、更精准。有任何问题或槽点,欢迎随时指出。
    • 2016年7月7日,第二轮修改完毕。且根据cs231n的卷积动图依次截取了18张图,然后用制图工具制作了一gif 动态卷积图,放在文中4.3节。
    • 2016年7月16日,完成第三轮修改。本轮修改主要体现在sigmoid函数的说明上,通过举例和统一相关符号让其含义更一目了然、更清晰。
    • 2016年8月15日,完成第四轮修改,增补相关细节。比如补充4.3节GIF动态卷积图中输入部分的解释,即7*7*3的含义(其中7*7代表图像的像素/长宽,3代表R、G、B 三个颜色通道)。不断更易懂。
    • 2016年8月22日,完成第五轮修改。本轮修改主要加强滤波器的解释,及引入CNN中滤波器的通俗比喻。

        July、最后修改于二零一六年八月二十二日中午于七月在线办公室。

     


    7 参考文献及推荐阅读

    1. 人工神经网络wikipedia
    2. 斯坦福机器学习公开课
    3. http://neuralnetworksanddeeplearning.com/
    4. 雨石 卷积神经网络:http://blog.csdn.net/stdcoutzyx/article/details/41596663
    5. cs231n 神经网络结构与神经元激励函数:http://cs231n.github.io/neural-networks-1/中译版
    6. cs231n 卷积神经网络:http://cs231n.github.io/convolutional-networks/
    7. 七月在线寒老师讲的5月dl班第4次课CNN与常用框架视频,已经剪切部分放在七月在线官网:julyedu.com
    8. 七月在线5月深度学习班第5课CNN训练注意事项部分视频:https://www.julyedu.com/video/play/42/207
    9. 七月在线5月深度学习班:https://www.julyedu.com/course/getDetail/37
    10. 七月在线5月深度学习班课程笔记——No.4《CNN与常用框架》:http://blog.csdn.net/joycewyj/article/details/51792477
    11. 七月在线6月数据数据挖掘班第7课视频:数据分类与排序
    12. 手把手入门神经网络系列(1)_从初等数学的角度初探神经网络:http://blog.csdn.net/han_xiaoyang/article/details/50100367
    13. 深度学习与计算机视觉系列(6)_神经网络结构与神经元激励函数:http://blog.csdn.net/han_xiaoyang/article/details/50447834
    14. 深度学习与计算机视觉系列(10)_细说卷积神经网络:http://blog.csdn.net/han_xiaoyang/article/details/50542880
    15. zxy 图像卷积与滤波的一些知识点:http://blog.csdn.net/zouxy09/article/details/49080029
    16. zxy 深度学习CNN笔记:http://blog.csdn.net/zouxy09/article/details/8781543/
    17. http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/中译版
    18. 《神经网络与深度学习》中文讲义:http://vdisk.weibo.com/s/A_pmE4iIPs9D
    19. ReLU与sigmoid/tanh的区别:https://www.zhihu.com/question/29021768
    20. CNN、RNN、DNN内部网络结构区别:https://www.zhihu.com/question/34681168
    21. 理解卷积:https://www.zhihu.com/question/22298352
    22. 神经网络与深度学习简史:1 感知机和BP算法4 深度学习的伟大复兴
    23. 在线制作gif 动图:http://www.tuyitu.com/photoshop/gif.htm
    24. 支持向量机通俗导论(理解SVM的三层境界)
    25. CNN究竟是怎样一步一步工作的? 本博客把卷积操作具体怎么个计算过程写清楚了,但这篇把为何要卷积操作也写清楚了,而且配偶图非常形象,甚赞。
    展开全文
  • 什么是卷积,为什么要用卷积? 原因很简单,任何一个输入信号都可以看成是一个个冲激信号的叠加,那么对应的输出也可以看做是一个个冲激响应的叠加 将这一个个冲激响应叠加起来就是一个卷积吗! 之所以引入卷积,是...

     

    什么是卷积,为什么要用卷积?
    原因很简单,任何一个输入信号都可以看成是一个个冲激信号的叠加,那么对应的输出也可以看做是一个个冲激响应的叠加
    将这一个个冲激响应叠加起来就是一个卷积吗!
    之所以引入卷积,是因为引入了冲激,将这些冲激响应叠加起来,就是卷积

    展开全文
  • 卷积的基本概念

    2018-07-23 11:43:51
     线性滤波可以说是图像处理最基本的...首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,...

      转自:  https://blog.csdn.net/zouxy09/article/details/49080029 

          线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。

          对图像和滤波矩阵进行逐个元素相乘再求和的操作就相当于将一个二维的函数移动到另一个二维函数的所有位置,这个操作就叫卷积或者协相关。卷积和协相关的差别是,卷积需要先对滤波矩阵进行180的翻转,但如果矩阵是对称的,那么两者就没有什么差别了。

          Correlation 和 Convolution可以说是图像处理最基本的操作,但却非常有用。这两个操作有两个非常关键的特点:它们是线性的,而且具有平移不变性shift-invariant。平移不变性指我们在图像的每个位置都执行相同的操作。线性指这个操作是线性的,也就是我们用每个像素的邻域的线性组合来代替这个像素。这两个属性使得这个操作非常简单,因为线性操作是最简单的,然后在所有地方都做同样的操作就更简单了。

          实际上,在信号处理领域,卷积有广泛的意义,而且有其严格的数学定义,但在这里不关注这个。

          2D卷积需要4个嵌套循环4-double loop,所以它并不快,除非我们使用很小的卷积核。这里一般使用3x3或者5x5。而且,对于滤波器,也有一定的规则要求:

          1)滤波器的大小应该是奇数,这样它才有一个中心,例如3x3,5x5或者7x7。有中心了,也有了半径的称呼,例如5x5大小的核的半径就是2。

          2)滤波器矩阵所有的元素之和应该要等于1,这是为了保证滤波前后图像的亮度保持不变。当然了,这不是硬性要求了。

          3)如果滤波器矩阵所有元素之和大于1,那么滤波后的图像就会比原图像更亮,反之,如果小于1,那么得到的图像就会变暗。如果和为0,图像不会变黑,但也会非常暗。

          4)对于滤波后的结构,可能会出现负数或者大于255的数值。对这种情况,我们将他们直接截断到0和255之间即可。对于负数,也可以取绝对值。

    二、神奇的卷积核

          上面说到,对图像的滤波处理就是对图像应用一个小小的卷积核,那这个小小的卷积核到底有哪些魔法,能让一个图像从惨不忍睹变得秀色可餐。下面我们一起来领略下一些简单但不简单的卷积核的魔法。

    2.1、啥也不做

          哈哈,大家可以看到啥了吗?这个滤波器啥也没有做,得到的图像和原图是一样的。因为只有中心点的值是1。邻域点的权值都是0,对滤波后的取值没有任何影响。

          下面我们动点真格的。

    2.2、图像锐化滤波器Sharpness Filter

          图像的锐化和边缘检测很像,首先找到边缘,然后把边缘加到原来的图像上面,这样就强化了图像的边缘,使图像看起来更加锐利了。这两者操作统一起来就是锐化滤波器了,也就是在边缘检测滤波器的基础上,再在中心的位置加1,这样滤波后的图像就会和原始的图像具有同样的亮度了,但是会更加锐利。

          我们把核加大,就可以得到更加精细的锐化效果

          另外,下面的滤波器会更强调边缘:

          主要是强调图像的细节。最简单的3x3的锐化滤波器如下:

          实际上是计算当前点和周围点的差别,然后将这个差别加到原来的位置上。另外,中间点的权值要比所有的权值和大于1,意味着这个像素要保持原来的值。

    2.3、边缘检测Edge Detection

          我们要找水平的边缘:需要注意的是,这里矩阵的元素和是0,所以滤波后的图像会很暗,只有边缘的地方是有亮度的。

          为什么这个滤波器可以寻找到水平边缘呢?因为用这个滤波器卷积相当于求导的离散版本:你将当前的像素值减去前一个像素值,这样你就可以得到这个函数在这两个位置的差别或者斜率。下面的滤波器可以找到垂直方向的边缘,这里像素上和下的像素值都使用:

          再下面这个滤波器可以找到45度的边缘:取-2不为了什么,只是为了让矩阵的元素和为0而已。

          那下面这个滤波器就可以检测所有方向的边缘:

          为了检测边缘,我们需要在图像对应的方向计算梯度。用下面的卷积核来卷积图像,就可以了。但在实际中,这种简单的方法会把噪声也放大了。另外,需要注意的是,矩阵所有的值加起来要是0.

    2.4、浮雕Embossing Filter

          浮雕滤波器可以给图像一种3D阴影的效果。只要将中心一边的像素减去另一边的像素就可以了。这时候,像素值有可能是负数,我们将负数当成阴影,将正数当成光,然后我们对结果图像加上128的偏移。这时候,图像大部分就变成灰色了。

          下面是45度的浮雕滤波器

          我们只要加大滤波器,就可以得到更加夸张的效果了

          这种效果非常的漂亮,就像是将一副图像雕刻在一块石头上面一样,然后从一个方向照亮它。它和前面的滤波器不同,它是非对称的。另外,它会产生负数值,所以我们需要将结果偏移,以得到图像灰度的范围。

          A:原图像。B:锐化。C:边缘检测。D:浮雕

    2.5、均值模糊Box Filter (Averaging)

          我们可以将当前像素和它的四邻域的像素一起取平均,然后再除以5,或者直接在滤波器的5个地方取0.2的值即可,如下图:

          可以看到,这个模糊还是比较温柔的,我们可以把滤波器变大,这样就会变得粗暴了:注意要将和再除以13.

          所以,如果你想要更模糊的效果,加大滤波器的大小即可。或者对图像应用多次模糊也可以。

     

    2.6、高斯模糊

          均值模糊很简单,但不是很平滑。高斯模糊就有这个优点,所以被广泛用在图像降噪上。特别是在边缘检测之前,都会用来移除细节。高斯滤波器是一个低通滤波器。

     

    2.7、运动模糊Motion Blur

          运动模糊可以通过只在一个方向模糊达到,例如下面9x9的运动模糊滤波器。注意,求和结果要除以9。

          这个效果就好像,摄像机是从左上角移动的右下角。

    三、卷积的计算

          对图像处理而言,存在两大类的方法:空域处理和频域处理!空域处理是指直接对原始的像素空间进行计算,频率处理是指先对图像变换到频域,再做滤波等处理。

    3.1、空域计算-直接2D卷积

    3.1.1、2D卷积

          直接2D卷积就是一开始说的那样,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。

          直接的实现也称为暴力实现brute force,因为它严格按照定义来实现,没有任何优化。当然了,在并行实现里面,它也是比较灵活的。另外,也存在一个优化版本,如果我们的kernel是separable可分的,那么就可以得到一个快5倍左右的卷积方法。

    2.1.2、边界处理

          那卷积核遇到图像边缘怎么办?例如图像顶部的像素,它的上面已经没有像素了,那么它的值如何计算?目前有四种主流的处理方法,我们用一维卷积和均值滤波来说明下。

          我们在1D图像中,用每个像素和它的二邻域的平均值来取代它的值。假设我们有个1D的图像I是这样的:

          对非图像边界的像素的操作比较简单。假设我们对I的第四个像素3做局部平均。也就是我们用2,3和7做平均,来取代这个位置的像素值。也就是,平均会产生一副新的图像J,这个图像在相同位置J (4) = (I(3)+I(4)+I(5))/3 = (2+3+7)/3 = 4。同样,我们可以得到J(3) = (I(2)+I(3)+I(4))/3 =(4+2+3)/3 = 3。需要注意的是,新图像的每个像素都取决于旧的图像,在计算J (4)的时候用J (3)是不对的,而是用I(3),I(4)和I(5)。所以每个像素都是它和它邻域两个像素的平均。平均是线性的操作,因为每个新的像素都是旧像素的线性组合。

          对卷积,也有必须要考虑的情况是,在图像边界的时候,怎么办?J(1)的值应该是什么?它取决于I(0),I(1)和I(2)。但是我们没有I(0)呀!图像左边没有值了。有四种方式来处理这个问题:

          1)第一种就是想象I是无限长的图像的一部分,除了我们给定值的部分,其他部分的像素值都是0。在这种情况下,I(0)=0。所以J(1) = (I(0) + I(1) + I(2))/3 = (0 + 5 + 4)/3= 3. 同样,J(10) = (I(9)+I(10)+I(11))/3 = (3+ 6 + 0)/3 = 3.

          2)第二种方法也是想象I是无限图像的一部分。但没有指定的部分是用图像边界的值进行拓展。在我们的例子中,因为图像I最左边的值I(1)=5,所以它左边的所有值,我们都认为是5 。而图像右边的所有的值,我们都认为和右边界的值I(10)一样,都是6。这时候J(1) = (I(0) + I(1) + I(2))/3 = (5 + 5 + 4)/3= 14/3. 而J(10) = (I(9)+I(10)+I(11))/3 = (3 + 6 + 6)/3 = 5。

          3)第三种情况就是认为图像是周期性的。也就是I不断的重复。周期就是I的长度。在我们这里,I(0)和I(10)的值就是一样的,I(11)的值和I(1)的值也是一样的。所以J(1) = (I(0) + I(1) + I(2))/3= (I(10) + I(1)+ I(2))/3 = (6 + 5 + 4)/3 = 5 。

          4)最后一种情况就是不管其他地方了。我们觉得I之外的情况是没有定义的,所以没办法使用这些没有定义的值,所以要使用图像I没有定义的值的像素都没办法计算。在这里,J(1)和J(10)都没办法计算,所以输出J会比原图像I要小。

          这四种方法有各自的优缺点。如果我们想象我们使用的图像只是世界的一个小窗口,然后我们需要使用窗口边界外的值,那么一般来说,外面的值和边界上的值是几乎相似的,所以第二种方法可能更说得过去。

    2.2、频域计算-快速傅里叶变换FFT卷积

          这个快速实现得益于卷积定理:时域上的卷积等于频域上的乘积。所以将我们的图像和滤波器通过算法变换到频域后,直接将他们相乘,然后再变换回时域(也就是图像的空域)就可以了。

          o表示矩阵逐元素相乘。那用什么方法将空域的图像和滤波器变换到频域了。那就是鼎鼎大名的Fast Fourier Transformation 快速傅里叶变换FFT(其实,在CUDA里面,已经实现了FFT了)。

          要在频域中对一副图像进行滤波,滤波器的大小和图像的大小必须要匹配,这样两者的相乘才容易。因为一般滤波器的大小比图像要小,所以我们需要拓展我们的kernel,让它和图像的大小一致。

          因为CUDA中的FFT实现是周期的,所以kernel的值也要安排成这样,以支持这种周期性。

          为了保证图像边界的像素也可以得到响应输出,我们也需要拓展我们的输入图像。同时,拓展的方式也要支持周期表达。

          如果只是使用卷积定理,没有对输入进行任何修改的话,那么我们得到的是周期卷积的结果。但这可能不是我们要的,因为周期卷积会对输入数据进行周期填补,引入一些artifacts。

          给定N长度的I和K,为了得到线性卷积,我们需要对I和K进行zero padding。为什么要补0,因为DFT假定了输入是无限和周期的,周期是N。 

          如上图,对于I和K,如果没有padding的话,隐含着会假定I和K是周期的,以他们的长度N为周期。图中本来N长度的I和K都是黑色虚线的部分,然后如果没有padding,隐含着就会在N之外,加上同样的无数个I,如红色虚线部分,加上了一个周期。对K也是这样。如果是zero padding的话,在黑色虚线的其他地方都全是0了,如图中蓝色部分。将I和K卷积,如果没有padding,如黑色虚线,会有红色那部分的artifact。如果有padding,就是蓝色实线。

     四、实验代码

          这是第二部分的Matlab实验代码:

     

    [python] view plain copy

     

    1. clear,close all, clc  
    2.    
    3. %% readimage  
    4. image =imread('test.jpg');  
    5.    
    6. %% definefilter  
    7. % -----Identity filter -----  
    8. kernel =[0, 0, 0  
    9.                      0, 1, 0  
    10.                      0, 0, 0];  
    11.    
    12. % -----Average Blur -----  
    13. kernel =[0, 1, 0  
    14.                      1, 1, 1  
    15.                      0, 1, 0] / 5;  
    16.    
    17. % -----Gaussian Blur -----  
    18. kernel =fspecial('gaussian', 5 , 0.8);  
    19.    
    20. % -----Motion Blur -----  
    21. kernel =[1, 0, 0, 0, 0  
    22.                      0, 1, 0, 0, 0  
    23.                      0, 0, 1, 0, 0  
    24.                      0, 0, 0, 1, 0  
    25.                      0, 0, 0, 0, 1] / 5;  
    26.                       
    27. % -----Edges Detection -----  
    28. kernel =[-1, -1, -1  
    29.                      -1, 8, -1  
    30.                      -1, -1, -1];  
    31.    
    32. % -----Sharpen filter -----  
    33. kernel =[-1, -1, -1  
    34.                      -1, 9, -1  
    35.                      -1, -1, -1];  
    36.                       
    37. % -----Emboss filter -----  
    38. kernel =[-1, -1, 0  
    39.                      -1,  0,1  
    40.                      0,   1,1];  
    41.                       
    42. %% convolethe image with defined kernel or filter  
    43. result =zeros(size(image));  
    44. result(:,:, 1) = conv2(double(image(:, :, 1)), double(kernel), 'same');  
    45. result(:,:, 2) = conv2(double(image(:, :, 2)), double(kernel), 'same');  
    46. result(:,:, 3) = conv2(double(image(:, :, 3)), double(kernel), 'same');  
    47.    
    48. %% showthe result  
    49. imshow(image);  
    50. figure  
    51. imshow(uint8(result))  


    五、参考文献

     

    [1] Correlation and Convolution.pdf

    [2] Lode's Computer GraphicsTutorial Image Filtering

    展开全文
  • 卷积

    2018-09-10 21:09:27
    一、卷积只能在同一组进行吗?-- Group convolution Group convolution 分组卷积,最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此作者把feature maps分给多...
  • 啰嗦开场白读本科期间,信号与系统里面经常讲到卷积(convolution),自动控制原理里面也会经常有提到卷积。硕士期间又学了线性系统理论与数字信号处理,里面也是各种大把大把卷积的概念。至于最近大火的深度学习,更...
  • 卷积神经网络四种卷积类型   https://www.toutiao.com/a6631333810287936013/     一般卷积 首先,我们需要就定义卷积层的一些参数达成一致。 卷积核大小(Kernel Size):卷积核定义了卷积的大小范围,...
  • 什么是卷积

    2018-08-31 17:07:47
    我们第一部分先讲 Convolution,到底什么是卷积,别忙,大家都用过某美颜软件吧, 比如我老婆新垣结衣: 美的不要的不要的。。。。。 然后我锐化了一下,变成如下图所示: 我们会发现,锐化后的图像边缘细节...
  • 我的机器学习教程「美团」算法工程师带你入门机器学习 已经开始更新了,欢迎大家订阅~ 任何关于算法、编程、AI行业知识或博客内容的问题,可以随时扫码关注公众号「图灵的猫」,加入”学习小组“,沙雕博主在线答疑...
  • 到底什么是卷积

    2019-08-11 11:22:50
    转载: https://blog.csdn.net/hxg2006/article/details/79626288 ...
  • 全面理解卷积

    2018-09-16 10:55:48
    概述 卷积的实质: 数学角度:==卷积实际上是一种积分运算...卷积定理可以将时空域的卷积等价位频域的相乘,进而利用FFT等快速算法,可以节约很大的运算成本 卷积分为: * 连续卷积 * 离散卷积 注:二者的区...
  • 一、卷积神经网络的基本概念 受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。近年来卷积神经网络在多个方向...
  •  传统的CNN网络只能给出图像的LABLE,但是在很多情况下需要对识别的物体进行分割实现end to end,然后FCN出现了,给物体分割提供了一个非常重要的解决思路,其核心就是卷积与反卷积,所以这里就详细解释卷积与反...
  • 数字信号处理中卷积 卷积一词最开始出现在信号与线性系统中,信号与线性系统中讨论的就是信号经过一个线性系统以后发生的变化。由于现实情况中常常是一个信号前一时刻的输出影响着这一时刻的输出,所在一般利用系统...
  • 转自:卷积神经网络CNN(1)——图像卷积与反卷积(后卷积,转置卷积)1.前言 传统的CNN网络只能给出图像的LABLE,但是在很多情况下需要对识别的物体进行分割实现end to end,然后FCN出现了,给物体分割提供了一个...
  • 卷积和反卷积在CNN中经常被用到,想要彻底搞懂并不是那么容易。本文主要分三个部分来讲解卷积和反卷积,分别包括概念、工作过程、代码示例,其中代码实践部分主结合TensorFlow框架来进行实践。给大家介绍一个卷积...
  • 最近在研究全卷积神经网络在图像分割方面的应用,因为自己是做医学图像处理方面的工作,所以就把一个基于FCN(全卷积神经网络)的神经网络用 keras 实现了,并且用了一个医学图像的数据集进行了图像分割。全卷积神经...
  • 图像处理之理解卷积

    2016-10-31 10:01:01
    图像处理之理解卷积   一:什么是卷积 离散卷积的数学公式可以表示为如下形式: f(x) = - 其中C(k)代表卷积操作数,g(i)代表样本数据, f(x)代表输出结果。 举例如下: 假设g(i)是一个一维的函数,而且代表的样本数...
  • 图像卷积与滤波的一些知识点zouxy09@qq.comhttp://blog.csdn.net/zouxy09 之前在学习CNN的时候,有对卷积经常一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流。一、线性滤波与卷积的基本...
1 2 3 4 5 ... 20
收藏数 160,147
精华内容 64,058
关键字:

卷积