2018-08-19 15:26:26 LYKXHTP 阅读数 241
  • OpenCV4 图像处理与视频分析实战教程

    基于OpenCV最新版本OpenCV4开始,从基础开始,详解OpenCV核心模块Core、Imgproc、video analysis核心API 与相关知识点,讲解从图像组成,像素操作开始,一步一步教你如何写代码,如何用API解决实际问题,从图像处理到视频分析,涵盖了计算机视觉与OpenCV4 中主要模块的相关知识点,穿插大量工程编程技巧与知识点与案例,全部课程的PPT课件与源码均可以下载。部分课程内容运行截图:

    1713 人正在学习 去看看 贾志刚

#图像处理

图像处理是指对图像进行分析、加工和处理,使其满足视觉、心理或其他要求的技术。图像处理是信号处理在图像领域上的一个应用。目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。

图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。

很多传统的一维信号处理的方法和概念仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。

##解决方案

几十年前,图像处理大多数由光学设备在模拟模式下进行。由于这些光学方法本身所具有的并行特性,至今仍然在很多应用领域占有核心地位,例如全息摄影。但是由于计算机速度的大幅度提高,这些技术正在迅速的被数字图像处理方法所替代。

从通常意义上讲,数字图像处理技术更加普适、可靠和准确。比起模拟方法,它们也更容易实现。专用的硬件被用于数字图像处理,例如,基于流水线的计算机体系结构在这方面获取了巨大的商业成功。今天,硬件解决方案被广泛的用于视频处理系统,但商业化的图像处理任务基本上仍以软件形式实现,运行在通用个人计算机上。

##常用的信号处理技术

大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们之中的一部分在二维情形下变得十分复杂。 同时图像处理自身也具有一些新的概念, 例如,连通性、旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。

图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。

###从一维信号处理扩展来的技术和概念

  • 分辨率
  • 动态范围
  • 带宽
  • 滤波器设计
  • 微分算子
  • 边缘检测
  • 域调制(Domain modulation)
  • 降噪(Noise reduction)
    ###专用于二维(或更高维)的技术和概念
  • 连通性
  • 旋转不变性

##典型问题

  • 几何变换(geometric transformations):包括放大、缩小、旋转等。
  • 颜色处理(color):颜色空间的转化、亮度以及对比度的调节、颜色修正等。
  • 图像融合(image composite):多个图像的加、减、组合、拼接。
  • 降噪(image denoising):研究各种针对二维图像的去噪滤波器或者信号处理技术。
  • 边缘检测:进行边缘或者其他局部特征提取。
  • 分区:依据不同标准,把二维图像分区成不同区域。
  • 图像编辑:和计算机图形学有一定交叉。
  • 图像配准:比较或集成不同条件下获取的图像。
  • 图像增强(image enhancement):
  • 图像数字水印:研究图像域的数据隐藏、加密、或认证。
  • 图像压缩:研究图像压缩。

##应用

  • 摄影及印刷
  • 卫星图像处理(Satellite image processing)
  • 医学图像处理(Medical image processing)
  • 面孔识别,特征识别(Face detection, feature detection, face identification)
  • 显微图像处理(Microscope image processing)
  • 汽车障碍识别(Car barrier detection)
2009-07-23 22:30:00 byxdaz 阅读数 23255
  • OpenCV4 图像处理与视频分析实战教程

    基于OpenCV最新版本OpenCV4开始,从基础开始,详解OpenCV核心模块Core、Imgproc、video analysis核心API 与相关知识点,讲解从图像组成,像素操作开始,一步一步教你如何写代码,如何用API解决实际问题,从图像处理到视频分析,涵盖了计算机视觉与OpenCV4 中主要模块的相关知识点,穿插大量工程编程技巧与知识点与案例,全部课程的PPT课件与源码均可以下载。部分课程内容运行截图:

    1713 人正在学习 去看看 贾志刚

图像处理与识别学习小结

 

数字图像处理是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。 数字图像处理是信号处理的子类, 另外与计算机科学、人工智能等领域也有密切的关系。 传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们中的一部分在二维情形下变得十分复杂。同时图像处理也具有自身一些新的概念,例如,连通性、旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。
数字图像处理应用在以下方面

摄影及印刷 (Photography and printing)

卫星图像处理 (Satellite image processing)

医学图像处理 (Medical image processing)

面孔识别, 特征识别 (Face detection, feature detection, face identification)

显微图像处理 (Microscope image processing)

汽车障碍识别 (Car barrier detection)

 

数字图像基础

图像的基本概念、图像取样和量化、数字图像表示、 空间和灰度级分辨率、图像纹理、像素间的一些基本关系(相邻像素、邻接性、连通性、区域和边界、距离度量)、线性和非线性变换

线性变换:如果变换函数是线性的或是分段线性,这种变换就是线性变换。以线性函数加大图像的对比度的效果是使整幅图像的质量改善。以分段线性函数加大图像中某个(或某几个)亮度区间的对比度的效果是使局部亮度区间的质量得到改善。

非线性变换:当变换函数是非线性时,即为非线性变换。常用的有指数变换和对数变换。

RGB (red green blue): 红绿蓝三基色

CMYK (Cyan-Magenta-Yellow-black inK): 青色-品红-黄色-黑色

HSI (Hue-Saturation-Intensity): 色调-饱和度-强度

DDB (device-dependent bitmap): 设备相关位图

DIB (device-independent bitmap): 设备无关位图

CVBS (Composite Video Broadcast Signal): 复合电视广播信号

YUV(亦称Y Cr Cb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL制)。

 



 

数字图像存储与显示

图像格式

在计算机中,有两种类型的图:矢量图(vector graphics)和位映象图(bitmapped graphics)。矢量图是用数学方法描述的一系列点、线、弧和其他几何形状,如图(a)所示。因此存放这种图使用的格式称为矢量图格式,存储的数据主要是绘制图形的数学描述;位映象图(bitmapped graphics)也称光栅图(raster graphics),这种图就像电视图像一样,由象点组成的,如图(b),因此存放这种图使用的格式称为位映象图格式,经常简称为位图格式,存储的数据是描述像素的数值。

 

矢量图与位映象图

目前包括bmp格式、gif格式、jpeg格式、jpeg2000格式、tiff格式、psd格式、

Png格式、swf格式、svg格式、pcx格式、dxf格式、wmf格式、emf格式、LIC格式、eps格式、TGA格式。

目前比较出名的图像处理库有很多,比如LEADTOOLSOPENCVLEADTOOLS这个是功能非常强大的图像多媒体库,但是这个是收费注册的。OpenCV 是一个跨平台的中、高层 API 构成,目前包括 300 多个 C 函数。它不依赖与其它的外部库,尽管也可以使用某些外部库。OpenCV 对非商业用途和商业用途都是免费(FREE)的。开源的图像库也有不少,比如:

ImageStoneGIMPCxImage等,虽然它们的功能没有LEADTOOLS强大,但是一般的图像处理是可以应付的。

具体的功能介绍参考:http://blog.csdn.net/byxdaz/archive/2009/03/09/3972293.aspx

OpenCV源代码及文档下载:SOURCEFORGE.NET
http://sourceforge.net/projects/opencvlibrary/

 

 

数字图像增强

图像增强的目的在于改善图像的显示质量,以利于信息的提取和识别。从方法上说,则是设法摒弃一些认为不必要或干扰的信息,而将所需要的信息得以突出出来,以利于分析判读或作进一步的处理。以下介绍几种较为简单的遥感数字图像增强处理方法。

A空间域增强处理

空间域是指图像平面所在的二维空间,空间域图像增强是指在图像平面上应用某种数学模型,通过改变图像像元灰度值达到增强效果,这种增强并不改变像元的位置。空域增强包括空域变换增强与空域滤波增强两种。空域变换增强是基于点处理的增强方法、空域滤波增强是基于邻域处理的增强方法。

1)、空域变换增强

常用的空域变换增强方法包括:对比度增强、直方图增强和图像算术运算等。

对比度增强是一种通过改变图像像元的亮度分布态势,扩展灰度分布区间来改变图像像元对比度,从而改善图像质量的图像处理方法。因为亮度值是辐射强度的反映,所以也称为辐射增强。常用的方法有对比度线性变换和非线性变换。其关键是寻找到一个函数,以此函数对图像中每一个像元进行变换,使像元得到统一的重新分配,构成得到反差增强的图像。

直方图增强

直方图均衡化

     直方图均衡化基本做法是将每个灰度区间等概率分布代替了原来的随机分布,即增强后的图象中每一灰度级的像元数目大致相同。直方图均衡化可使得面积最大的地物细节得以增强,而面积小的地物与其灰度接近的地物进行合并,形成综合地物。减少灰度等级换取对比度的增大。

直方图归一化 

     直方图归一化是把原图像的直方图变换为某种指定形态的直方图或某一参考图像的直方图,然后按着已知的指定形态的直方图调整原图像各像元的灰级,最后得到一个直方图匹配的图像。这种方法主要应用在有一幅很好的图像作为标准的情况下,对另一幅不满意的图像用标准图像的直方图进行匹配处理,以改善被处理图像的质量。如在数字镶嵌时,重叠区影像色调由于时相等原因差异往往很大,利用直方图匹配这一方法后可以改善重叠区影像色调过度,如果镶嵌图像时相相差不大,完全可以作到无缝镶嵌。

数字图像的算术运算

两幅或多幅单波段影像,完成空间配准后,通过一系列运算,可以实现图像增强,达到提取某些信息或去掉某些不必要信息的目的。

  

2)、空域滤波增强

空域变换增强是按像元逐点运算的,从整体上改善图像的质量,并不考虑周围像元影响。空间滤波增强则是以重点突出图像上的某些特征为目的的(如突出边缘或纹理等),通过像元与周围相邻像元的关系,采取空间域中的邻域处理方法进行图像增强。邻域法处理用于去噪声、图像平滑、锐化和相关运算。

图像卷积运算是在空间域上对图像作局部检测的运算,以实现平滑和锐化的目的。具体作法是选定一卷积函数,又称为“M×N窗口模板,如3×35×5等。然后从图像左上角开始开一与模板同样大小的活动窗口,图像窗口与模板像元的亮度值对应相乘再相加。将计算结果赋予中心像元作为其灰度值,然后待移动后重新计算,将计算结果赋予另一个中心像元,以此类推直到全幅图像扫描一遍结束生成新的图像。

平滑是指图像中出现某些亮度变化过大的区域,或出现不该有的亮点(噪声)时,采用平滑方法可以减小变化,使亮度平缓或去掉不必要噪声点。它实际上是使图像中高频成分消退,即平滑图像的细节,降低其反差,保存低频成分,在频域中称为低通滤波。具体方法有:均值平滑、中值滤波、锐化。

锐化的作用在于提高边缘灰度值的变化率,使界线更加清晰。它是增强图像中的高频成分,在频域处理中称为高通滤波,也就是使图像细节的反差提高,也称边缘增强。要突出图像的边缘、线状目标或亮度变化率大的部分常采用锐化方法。一般有三种实现方法:

1)梯度法

    梯度反映了相邻像元的亮度变化率,即图像中如果存在边缘,如湖泊、河流的边界,山脉和道路等,则边缘处有较大的梯度值。对于亮度值较平滑的部分,亮度梯度值较小。因此,找到梯度较大的位置,也就找到边缘,然后再用不同的梯度计算值代替边缘处像元的值,也就突出了边缘,实现了图像的锐化。通常有罗伯特梯度和索伯尔梯度方法。

2)拉普拉斯算法

    拉普拉斯算法的意义与梯度法不同,它不检测均匀的亮度变化,而是检测变化率的变化率,相当于二阶微分。计算出的图像更加突出亮度值突变的位置。

3)定向检测

    当有目的地检测某一方向的边、线或纹理特征时,可选择特定的模板卷积运算作定向检测。可以检测垂直边界、水平边界和对角线边界等,各使用的模板不同

 

B频率域图像增强处理
频域增强指在图像的频率域内,对图像的变换系数(频率成分)直接进行运算,然后通过Fourier逆变换以获得图像的增强效果。

一般来说,图像的边缘和噪声对应Fourier变换中的高频部分,所以低通滤波能够平滑图像、去除噪声。

图像灰度发生聚变的部分与频谱的高频分量对应,所以采用高频滤波器衰减或抑制低频分量,能够对图像进行锐化处理。

频域,就是由图像f(x,y)的二维傅立叶变换和相应的频率变量(u,v)的值所组成的空间。在空间域图像强度的变化模式(或规律)可以直接在该空间得到反应。F(0,0)是频域中的原点,反应图像的平均灰度级,即图像中的直流成分;低频反映图像灰度发生缓慢变化的部分;而高频对应图像中灰度发生更快速变化的部分,如边缘、噪声等。但频域不能反应图像的空间信息。

 

 

二维DFT及其反变换、Fast FT

关于这方面的内容需要参考数学知识。

空域和频域滤波间的对应关系:

卷积定理是空域和频域滤波的最基本联系纽带。二维卷积定理:

 

 

 


基本计算过程:

  1. 取函数h(m,n)关于原点的镜像,得到h(-m,-n)
  2. 对某个(x,y),使h(-m,-n)移动相应的距离,得到h(x-m,y-n)
  3. 对积函数f(m,n)h(x-m,y-n)(m,n)的取值范围内求和
  4. 位移是整数增量,对所有的(x,y)重复上面的过程,直到两个函数:f(m,n)h(x-m,y-n)不再有重叠的部分。

 

傅立叶变换是空域和频域的桥梁,关于两个域滤波的傅立叶变换对:

 

 

 

 

 

 

 

 


频域与空域滤波的比较:

1. 对具有同样大小的空域和频率滤波器:h(x,y), H(u,v),频域计算(由于FFT)往往更有效(尤其是图像尺寸比较大时)。但对在空域中用尺寸较小的模板就能解决的问题,则往往在空域中直接操作。

2. 频域滤波虽然更直接,但如果可以使用较小的滤波器,还是在空域计算为好。    因为省去了计算傅立叶变换及反变换等步骤。

3. 由于更多的直观性,频率滤波器设计往往作为空域滤波器设计的向导。

 

平滑的频率域滤波器类型
、理想低通滤波器
、巴特沃思低通滤波器
、高斯低通滤波器
频率域锐化滤波器类型
理想高通滤波器
巴特沃思高通滤波器

高斯型高通滤波器

频率域的拉普拉斯算子
钝化模板、高频提升滤波和高频加强滤波
频率域图像增强处理的过程:

 

 

图像复原
图像复原:试图利用退化过程的先验知识,去恢复已被退化图像的本来面目。

 

图像复原的基本思路:先建立退化的数学模型,然后根据该模型对退化图像进行拟合。

图像复原模型可以用连续数学和离散数学处理,处理项的实现可在空间域卷积,或在频域相乘。 
参考资料:
http://download.csdn.net/source/1513324

 


边缘检测

数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域十分重要的基础,图像理解和分析的第一步往往就是边缘检测,目前它以成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。所谓边缘就是指图像局部亮度变化最显著的部分,它是检测图像局部变化显著变化的最基本的运算。边缘的记录有链码表和线段表2种,链码表适合计算周长,线段表容易计算面积以及相关的,他们之间可以相互的转换

常见的边缘检测算法:

Roberts边缘检测算子

Sobel边缘算子

Prewitt边缘算子

Kirsch边缘算子

CANNY边缘检测

 


图像压缩
图像压缩是数据压缩技术在数字图像上的应用,它的目的是减少图像数据中的冗余信息从而用更加高效的格式存储和传输数据。图像压缩可以是有损数据压缩也可以是无损数据压缩。对于如绘制的技术图、图表或者漫画优先使用无损压缩,这是因为有损压缩方法,尤其是在低的位速条件下将会带来压缩失真。如医疗图像或者用于存档的扫描图像等这些有价值的内容的压缩也尽量选择无损压缩方法。有损方法非常适合于自然的图像,例如一些应用中图像的微小损失是可以接受的(有时是无法感知的),这样就可以大幅度地减小位速。

无损图像压缩方法有:

行程长度编码

熵编码法

LZW算法

有损压缩方法有:

将色彩空间化减到图像中常用的颜色。所选择的颜色定义在压缩图像头的调色板中,图像中的每个像素都用调色板中颜色索引表示。这种方法可以与 抖动(en:dithering)一起使用以模糊颜色边界。

色度抽样,这利用了人眼对于亮度变化的敏感性远大于颜色变化,这样就可以将图像中的颜色信息减少一半甚至更多。

变换编码,这是最常用的方法。首先使用如离散余弦变换(DCT)或者小波变换这样的傅立叶相关变换,然后进行量化和用熵编码法压缩。

分形压缩(en:Fractal compression)。



形态学图像处理
 
膨胀与腐蚀

 膨胀
腐蚀
开操作与闭操作
击中或击不中变换
一些基本的形态学算法

边界提取
区域填充
连通分量的提取
凸壳
细化
粗化
骨架

裁剪


图像分割
图像分割是指通过某种方法,使得画面场景中的目标物被分为不同的类别。通常图像分割的实现方法是,将图像分为“黑”、“白”两类,这两类分别代表了两个不同的对象。

图像分割方法:阈值分割区域分割、数学形态学、模式识别方法

A、阈值分割包括以下几种:

1)由直方图灰度分布选择阈值

2)双峰法选择阈值

3)迭代法选取阈值

     原理如下,很好理解。

     迭代法是基于逼近的思想,其步骤如下:
      1. 求出图象的最大灰度值和最小灰度值,分别记为ZMAX和ZMIN,令初始阈值T0=(ZMAX+ZMIN)/2;
     2. 根据阈值TK将图象分割为前景和背景,分别求出两者的平均灰度值ZO和ZB;
     3. 求出新阈值TK+1=(ZO+ZB)/2;
     4. 若TK=TK+1,则所得即为阈值;否则转2,迭代计算。

4 )大津法选择阈值

大津法是属于最大类间方差法,它是自适应计算单阈值的简单高效方法,或者叫(Otsu

大津法由大津于1979年提出,对图像Image,记t为前景与背景的分割阈值,前景点数占图像比例为w0,平均灰度为u0;背景点数占图像比例为w1,平均灰度为u1。图像的总平均灰度为:u=w0*u0+w1*u1。从最小灰度值到最大灰度值遍历t,当t使得值g=w0*(u0-u)2+w1*(u1-u)2 最大时t即为分割的最佳阈值。对大津法可作如下理解:该式实际上就是类间方差值,阈值t分割出的前景和背景两部分构成了整幅图像,而前景取值u0,概率为 w0,背景取值u1,概率为w1,总均值为u,根据方差的定义即得该式。因方差是灰度分布均匀性的一种度量,方差值越大,说明构成图像的两部分差别越大, 当部分目标错分为背景或部分背景错分为目标都会导致两部分差别变小,因此使类间方差最大的分割意味着错分概率最小。直接应用大津法计算量较大,因此一般采用了等价的公式g=w0*w1*(u0-u1)2

5)由灰度拉伸选择阈值

大津法是较通用的方法,但是它对两群物体在灰度不明显的情况下会丢失一些整体信息。因此为了解决这种现象采用灰度拉伸的增强大津法。在大津法的思想上增加灰度的级数来增强前两群物体的灰度差。对于原来的灰度级乘上同一个系数,从而扩大了图像灰度的级数。试验结果表明不同的拉伸系数,分割效果差别比较大。

 

B、区域的分割

区域生长、区域分离与合并

 区域生长算法


C基于形态学分水岭的分割

分水岭分割算法


图像特征提取与匹配

常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。

A 颜色特征

特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。

常用的特征提取与匹配方法:

颜色直方图

其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。

颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。

 

B 纹理特征

纹理特征的提取方法比较简单,它是用一个活动的窗口在图像上连续滑动,分别计算出窗口中的方差、均值、最大值、最小值及二者之差和信息熵等,

形成相应的纹理图像,当目标的光谱特性比较接近时,纹理特征对于区分目标可以起到积极的作用。选取适当的数据动态变化范围,进行纹理特征提取后,使影像的纹理特征得到突出,有利于提取构造信息。

特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实的纹理。

常用的特征提取与匹配方法:

纹理特征描述方法分类

1)统计方法统计方法的典型代表是一种称为灰度共生矩阵的纹理特征分析方法Gotlieb Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数

2)几何法

所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。

3)模型法

模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。典型的方法是随机场模型法,如马尔可夫(Markov)随机场(MRF)模型法和 Gibbs 随机场模型法

4)信号处理法

纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。

灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。Tamura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即

:粗糙度、对比度、方向度、线像度、规整度和粗略度。自回归纹理模型(simultaneous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种应用实例。

 

C形状特征

特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,

常用的特征提取与匹配方法:

通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。

几种典型的形状特征描述方法:

1)边界特征法该方法通过对边界特征的描述来获取图像的形状参数。其中Hough 变换检测平行直线方法和边界方向直方图方法是经典方法。Hough 变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。

2)傅里叶形状描述符法

傅里叶形状描述符(Fourier shape descriptors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。

由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。

3)几何参数法

形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。在 QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。

 

D空间关系特征

特点:所谓空间关系,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。通常空间位置信息可以分为两类:相对空间位置信息和绝对空间位置信息。前一种关系强调的是目标之间的相对情况,如上下左右关系等,后一种关系强调的是目标之间的距离大小以及方位。显而易见,由绝对空间位置可推出相对空间位置,但表达相对空间位置信息常比较简单。
空间关系特征的使用可加强对图像内容的描述区分能力,但空间关系特征常对图像或目标的旋转、反转、尺度变化等比较敏感。另外,实际应用中,仅仅利用空间信息往往是不够的,不能有效准确地表达场景信息。为了检索,除使用空间关系特征外,还需要其它特征来配合。

常用的特征提取与匹配方法:

提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。

 

 

模式识别

模式识别是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别的过程。模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,前者是对样本进行特征选择,寻找分类的规律,后者是根据分类规律对未知样本集进行分类和识别。广义的模式识别属计算机科学中智能模拟的研究范畴,内容非常广泛,包括声音和语言识别、文字识别、指纹识别、声纳信号和地震信号分析、照片图片分析、化学模式识别等等。计算机模式识别实现了部分脑力劳动自动化。

模式识别--对表征事物或现象的各种形式的(数值的,文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。

模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、文字、符号、三位物体和景物以及各种可以用物理的、化学的、生物的传感器对对象进行测量的具体模式进行分类和辨识。

模式识别问题指的是对一系列过程或事件的分类与描述,具有某些相类似的性质的过程或事件就分为一类。模式识别问题一般可以应用以下4种方法进行分析处理。

模版比对:

统计模式识别方法:统计模式识别方法是受数学中的决策理论的启发而产生的一种识别方法,它一般假定被识别的对象或经过特征提取向量是符合一定分布规律的随机变量。其基本思想是将特征提取阶段得到的特征向量定义在一个特征空间中,这个空间包含了所有的特征向量,不同的特征向量,或者说不同类别的对象都对应于空间中的一点。在分类阶段,则利用统计决策的原理对特征空间进行划分,从而达到识别不同特征的对象的目的。统计模式识别中个应用的统计决策分类理论相对比较成熟,研究的重点是特征提取。统计模式识别的基本原理是:有相似性的样本在模式空间中互相接近,并形成集团,即物以类聚。其分析方法是根据模式所测得的特征向量Xi=(xi1,xi2,…,xid)T(i=1,2,…,N),将一个给定的模式归入C个类ω1,ω2,…,ωc中,然后根据模式之间的距离函数来判别分类。其中,T表示转置;N为样本点数;d为样本特征数。

统计模式识别的主要方法有:判别函数法,k近邻分类法,非线性映射法,特征分析法,主因子分析法等。

在统计模式识别中,贝叶斯决策规则从理论上解决了最优分类器的设计问题,但其实施却必须首先解决更困难的概率密度估计问题。BP神经网络直接从观测数据(训练样本)学习,是更简便有效的方法,因而获得了广泛的应用,但它是一种启发式技术,缺乏指定工程实践的坚实理论基础。统计推断理论研究所取得的突破性成果导致现代统计学习理论——VC理论的建立,该理论不仅在严格的数学基础上圆满地回答了人工神经网络中出现的理论问题,而且导出了一种新的学习方法——支撑向量机。

 

人工神经网络模式识别:人工神经网络的研究起源于对生物神经系统的研究。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。

句法结构模式识别:又称结构方法或语言学方法。其基本思想是把一个模式描述为较简单的子模式的组合,子模式又可描述为更简单的子模式的组合,最终得到一个树形的结构描述,在底层的最简单的子模式称为模式基元。在句法方法中选取基元的问题相当于在决策理论方法中选取特征的问题。通常要求所选的基元能对模式提供一个紧凑的反映其结构关系的描述,又要易于用非句法方法加以抽取。显然,基元本身不应该含有重要的结构信息。模式以一组基元和它们的组合关系来描述,称为模式描述语句,这相当于在语言中,句子和短语用词组合,词用字符组合一样。基元组合成模式的规则,由所谓语法来指定。一旦基元被鉴别,识别过程可通过句法分析进行,即分析给定的模式语句是否符合指定的语法,满足某类语法的即被分入该类。

在几种算法中,统计模式识别是最经典的分类识别方法,在图像模式识别中有着非常广泛的应用。

 

 

参考书籍:美国 冈萨雷斯 数字图像处理第二版

2015-08-03 17:37:01 qq_26898461 阅读数 1302
  • OpenCV4 图像处理与视频分析实战教程

    基于OpenCV最新版本OpenCV4开始,从基础开始,详解OpenCV核心模块Core、Imgproc、video analysis核心API 与相关知识点,讲解从图像组成,像素操作开始,一步一步教你如何写代码,如何用API解决实际问题,从图像处理到视频分析,涵盖了计算机视觉与OpenCV4 中主要模块的相关知识点,穿插大量工程编程技巧与知识点与案例,全部课程的PPT课件与源码均可以下载。部分课程内容运行截图:

    1713 人正在学习 去看看 贾志刚

 图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。

图像处理是信号处理的子类,另外与计算机科学人工智能等领域也有密切的关系。

传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。

解决方案

影像强化

几十年前,图像处理大多数由光学设备在模拟模式下进行。由于这些光学方法本身所具有的并行特性,至今他们仍然在很多应用领域占有核心地位,例如全息摄影。但是由于计算机速度的大幅度提高,这些技术正在迅速的被数字图像处理方法所替代。

从通常意义上讲,数字图像处理技术更加普适、可靠和准确。比起模拟方法,它们也更容易实现。专用的硬件被用于数字图像处理,例如,基于流水线的计算机体系结构在这方面取得了巨大的商业成功。今天,硬件解决方案被广泛的用于视频处理系统,但商业化的图像处理任务基本上仍以软件形式实现,运行在通用个人电脑上。

常用的信号处理技术

大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们中的一部分在二维情形下变得十分复杂。同时图像处理也具有自身一些新的概念,例如,连通性旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。

图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。

从一维信号处理扩展来的技术和概念

专用于二维(或更高维)的技术和概念

典型问题

  • 几何变换(geometric transformations):包括放大、缩小、旋转等。
  • 颜色处理(color):颜色空间的转化、亮度以及对比度的调节、颜色修正等。
  • 图像融合(image composite):多个图像的加、减、组合、拼接。
  • 降噪(image denoising):研究各种针对二维图像的去噪滤波器或者信号处理技术。
  • 边缘检测(edge detection):进行边缘或者其他局部特征提取。
  • 分割(image segmentation):依据不同标准,把二维图像分割成不同区域。
  • 图像编辑(image editing):和计算机图形学有一定交叉。
  • 图像配准(image registration):比较或集成不同条件下获取的图像。
  • 图像增强(image enhancement):
  • 图像数字水印(image watermarking):研究图像域的数据隐藏、加密、或认证。
  • 图像压缩(image compression):研究图像压缩。

应用

  • 摄影及印刷 (Photography and printing)
  • 卫星图像处理 (Satellite image processing)
  • 医学图像处理 (Medical image processing)
  • 面孔识别, 特征识别 (Face detection, feature detection, face identification)
  • 显微图像处理 (Microscope image processing)
  • 汽车障碍识别 (Car barrier detection)

软件工具

  • ImageJ [1]
  • OpenCV [2]
  • Rapidminer图像处理扩展 [3] -工具,图像处理和图像挖掘

相关相近领域


2013-03-31 03:14:04 STELLAR0 阅读数 2724
  • OpenCV4 图像处理与视频分析实战教程

    基于OpenCV最新版本OpenCV4开始,从基础开始,详解OpenCV核心模块Core、Imgproc、video analysis核心API 与相关知识点,讲解从图像组成,像素操作开始,一步一步教你如何写代码,如何用API解决实际问题,从图像处理到视频分析,涵盖了计算机视觉与OpenCV4 中主要模块的相关知识点,穿插大量工程编程技巧与知识点与案例,全部课程的PPT课件与源码均可以下载。部分课程内容运行截图:

    1713 人正在学习 去看看 贾志刚

最近版上有不少人在讨论图像处理的就业方向,似乎大部分都持悲观的态度。我想结合我今年找工作的经验谈谈我的看法。

      就我看来,个人觉得图像处理的就业还是不错的。首先可以把图像看成二维、三维或者更高维的信号,从这个意义上来说,图像处理是整个信号处理里面就业形势最好的,因为你不仅要掌握(一维)信号处理的基本知识,也要掌握图像处理(二维或者高维信号处理)的知识。其次,图像处理是计算机视觉和视频处理的基础,掌握好了图像处理的基本知识,就业时就可以向这些方向发展。目前的模式识别,大部分也都是图像模式识别。在实际应用场合,采集的信息很多都是图像信息,比如指纹、条码、人脸、虹膜、车辆等等。说到应用场合,千万不能忘了医学图像这一块,如果有医学图像处理的背景,去一些医疗器械公司或者医疗软件公司也是不错的选择。图像处理对编程的要求比较高,如果编程很厉害,当然就业也多了一个选择方向,并不一定要局限在图像方向。

      下面谈谈我所知道的一些公司信息,不全,仅仅是我所了解到的或者我所感兴趣的,实际远远不止这么多。

      搜索方向

      基于内容的图像或视频搜索是很多搜索公司研究的热点。要想进入这个领域,必须有很强的编程能力,很好的图像处理和模式识别的背景。要求高待遇自然就不错,目前这方面的代表公司有微软、google、yahoo和百度,个个鼎鼎大名。

      医学图像方向

      目前在医疗器械方向主要是几个大企业在竞争,来头都不小,其中包括Simens、GE、飞利浦和柯达,主要生产CT和MRI等医疗器材。由于医疗器械的主要功能是成像,必然涉及到对图像的处理,做图像处理的很有机会进入这些公司。它们在国内都设有研发中心,simens的在上海和深圳,GE和柯达都在上海,飞利浦的在沈阳。由于医疗市场是一个没有完全开发的市场,而一套医疗设备的价格是非常昂贵的,所以在这些地方的待遇都还可以,前景也看好。国内也有一些这样的企业比如深圳安科和迈瑞

      计算机视觉和模式识别方向

      我没去调研过有哪些公司在做,但肯定不少,比如指纹识别、人脸识别、虹膜识别。还有一个很大的方向是车牌识别,这个我倒是知道有一个公司高德威智能交通似乎做的很不错的样子。目前视频监控是一个热点问题,做跟踪和识别的可以在这个方向找到一席之地。

上海法视特位于上海张江高科技园区,在视觉和识别方面做的不错。北京的我也知道两个公司:大恒和凌云,都是以图像作为研发的主体。

      视频方向

      一般的高校或者研究所侧重在标准的制定和修改以及技术创新方面,而公司则侧重在编码解码的硬件实现方面。一般这些公司要求是熟悉或者精通MPEG、H.264或者AVS,选择了这个方向,只要做的还不错,基本就不愁饭碗。由于这不是我所感兴趣的方向,所以这方面的公司的信息我没有收集,但平常在各个bbs或者各种招聘网站经常看到。

我所知道的两个公司:诺基亚和pixelworks

      其他

      其实一般来说,只要涉及到成像或者图像的基本都要图像处理方面的人。比方说一个成像设备,在输出图像之前需要对原始图像进行增强或者去噪处理,存储时需要对图像进行压缩,成像之后需要对图像内容进行自动分析,这些内容都是图像处理的范畴。下面列举一些与图像有关或者招聘时明确说明需要图像处理方面人才的公司:

上海豪威集成电路有限公司(www.ovt.com.cn)

中芯微

摩托罗拉上海研究院

威盛(VIA)

松下

索尼

清华同方

三星

所有与图像(静止或者运动图像)有关的公司都是一种选择。比如数码相机、显微镜成像、超声成像、工业机器人控制、显示器、电视、遥感等等,都可以作为求职方向。

要求:

1、外语。如果进外企,外语的重要性不言而喻。一般外企的第一轮面试都是英语口语面试。

2、编程。这方面尤以C++为重,很多公司的笔试都是考c++知识。

3、专业水平。如果要找专业相关的工作,研究生期间的研究经历和发表的论文就显的比较重要。

4、知识面的宽度。我觉得在研究生期间,除了做好自己的研究方向之外,扩宽一下知识面也有很大的帮助,当然这个知识面指的是图像处理、计算机视觉和模式识别,知识面越宽,就业时的选择就会越多。

图像处理方向毕业的就业面非常广,而且待遇在应届生应该是中上等。其实还是一句话,能力决定一切。只要研究生三年没有白过,根本不愁找不到好工作。祝所有正在读研或者即将读研的朋友将来都能有一份满意的工作。

我结合自己找工作的一些经验简单介绍一下图像处理方向就业前景,希望能对后来者有所帮助!

1、请学好图像基本理论知识,笔试会遇到很多基础的题;

2、请学好c++语言,99%以上的公司在招图像岗位的人员时都会笔试c++;

3、请多做一些实际的项目,少一些理论的研究(针对中小企业而言);

4、请不要只局限于的课题,因为可能你的课题只是图像处理领域的一些皮毛;

5、请多了解一些相关的前沿知识;

6、请不要迷信自己的算法,比如BP神经网络(可能理论研究时用的很多,可是实际呢?)

7、请尽量与企业的相关人士探讨该领域的问题,那样的收获比书本大很多;

先写这么多吧,以后再补充!希望能对大家有所帮助!

附:北京相关图像的公司(希望大家能够多补充,公司排名不分先后,若分类错误,请见谅,呵呵!)

外企:

1、  东芝(中国)有限公司 研究开发中心开发部

2、  通用电气(GE)医疗集团

3、  微软

4、  SONY

5、  凌阳

6、  理光软件研究所(北京)

7、  富士通研究开发中心有限公司

8、  三星电子中国通信研究院

9、  NEC中国研究院

10、  研发系统

11、  德加拉北京办事处

12、  适普软件

13、  松下

14、  佳能信息技术(北京)有限公司

15、  ITS(中国)有限公司

大型企业:

1、  海湾控股集团有限公司

2、  腾讯研究院招

3、  北大方正

4、  清华同方

5、  北京方正国际

6、  卓望集团

7、  迪瑞集团(北京)研发中心

8、  汉王科技股份有限公司

9、  威视股份

10、  

事业单位:

1、  中国核工业集团公司

2、  船舶系统工程部

3、  中科院软件所二部

4、  中国科学院软件研究所

5、  中科院自动化所

6、  中国兵器工业第二〇八研究所

7、  中国航天科技集团公司

8、  中国航天科技集团公司第五研究院

9、  综合信息系统技术国家级重点实验室

10、  国家农业信息化工程技术研究中心

11、  中国航天科工集团公司飞航技术研究院

12、  铁道部信息技术中心

13、  中国航天科工集团第二研究院第二〇七所

14、  中国科学院生物物理研究所

15、  中国电子科技集团公司第三研究所

16、  中国船舶信息中心

17、  航天科工卫星技术有限公司

18、  中科院电子所

19、  中国科学院计算技术研究所

20、  中国安全生产科学研究院

21、  中国航天时代电子公司光纤惯导项目分公司

22、  中国计量科学研究院

23、  公安部第一研究所

24、  中国印钞造币总公司

中小企业:

1、  北京中自邦柯科技有限公司

2、  北京锦恒佳晖汽车电子系统有限公司

3、  长峰科技工业集团公司

4、  北京京天威科技发展有限公司招聘职位

5、  北京优纳科技有限公司

6、  北京深拓科技有限公司

7、  永鑫宇恒信息技术

8、  北京蓝卡软件技术有限公司

9、  中盛信合(北京)科技有限公司

10、  北京赛尔蒂扶科技有限公司

11、  北达万坤(北京)科技发展有限公司

12、  北京思比科微电子技术有限公司

13、  北京德韶数码技术有限公司

14、  北京天远三维科技有限公司

15、  航天星图科技(北京)有限公司

16、  北京友通

17、  北京中盾安民分析技术有限公司

18、  北京文安科技发展有限公司

19、  北京华生恒业科技有限公司

20、  北京经纬恒润科技有限责任公司

21、  北京伟景行数字城市科技有限公司招聘

22、  北京极明源科技有限公司

23、  北京优立慧科信息技术有限公司

24、  北京华旗资讯数码科技有限公司

25、  北京新航智科技有限公司

26、  银河动力

27、  北京普赛科技有限公司

28、  北京德鑫泉科技发展有限公司

29、  北京嘉恒中自图像技术有限公司

30、  优加利信息科技(北京)技术中心

31、  北京天诚盛业科技有限公司

32、  北京华胜天成有限公司

33、  北京威速科技有限公司

34、  深圳市蓝韵实业有限公司(北京)

35、  北京维深科技发展有限责任公司

36、  重庆金山科技(集团)有限公司(北京)

37、  创新科技(中国)有限公司北京分公司

38、  北京思创贯宇科技开发有限公司

39、  明锐标图

40、  中钞长城金融设备控股有限公司

41、  北京文安视觉科技有限公司

42、  北京东方红海科技发展有限公司

43、  北京普赛科技有限公司

44、  北京昂天科技有限公司

45、  中国东方红卫星股份有限公司

46、  北京长江源科技有限公司

47、  北京海鑫科金高科技股份有限公司

48、  北京瑞斯康达科技发展有限公司

49、  厚德新视

50、  北京嘉恒中自图像技术有限公司

51、  北京科天健图像技术有限公司

52、  大恒图像

53、  凌云光子技术集团

54、  微视凌志

55、  北京微视新纪元科技有限公司

56、  银河传媒

57、  太阳驹(北京)科技发展有限公司

58、  北京道达天际软件技术有限公司

59、  北京航星永志科技有限公司

60、  北京创新未来科技有限公司

61、  北京吉威数码信息技术有限公司

62、  神形互联(北京)科技有限公司

63、  智安邦科技

64、  北京亚邦伟业技术有限公司

65、  北京顶亮科技有限公司

66、  北京华星世联科技有限公司

67、  北京昂天科技有限公司

68、  北京多维视通技术有限公司

69、  同方知网技术产业集团

70、  北京天诚盛业科技有限公司

71、  欢乐网北京研发中心

72、  德众通科技发展(北京)有限公司

73、  北京中远通科技有限公司

74、  北京山海经纬信息技术有限公司

75、  北京德威同致科技有限公司

76、  航天量子数码科技(北京)有限公司

77、  北京超图地理信息技术有限公司

78、  北京中科软件有限公司

79、  北京源德生物医学工程有限公司

80、  北京思比科微电子技术有限公司

81、  北京融信博通科技发展有限公司

82、  北京盛赞科技有限公司_

83、  北京普赛科技有限公司

84、  北京文通信息技术有限公司

85、  万盛(中国)科技有限公司

86、  北京康拓红外技术有限公司

2012-04-28 15:53:24 changbaolong 阅读数 4172
  • OpenCV4 图像处理与视频分析实战教程

    基于OpenCV最新版本OpenCV4开始,从基础开始,详解OpenCV核心模块Core、Imgproc、video analysis核心API 与相关知识点,讲解从图像组成,像素操作开始,一步一步教你如何写代码,如何用API解决实际问题,从图像处理到视频分析,涵盖了计算机视觉与OpenCV4 中主要模块的相关知识点,穿插大量工程编程技巧与知识点与案例,全部课程的PPT课件与源码均可以下载。部分课程内容运行截图:

    1713 人正在学习 去看看 贾志刚

       图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。

图像处理是信号处理的子类,另外与计算机科学人工智能等领域也有密切的关系。

传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。

 

目录

解决方案

影像强化

几十年前,图像处理大多数由光学设备在模拟模式下进行。由于这些光学方法本身所具有的并行特性,至今他们仍然在很多应用领域占有核心地位,例如全息摄影。但是由于计算机速度的大幅度提高,这些技术正在迅速的被数字图像处理方法所替代。

从通常意义上讲,数字图像处理技术更加普适、可靠和准确。比起模拟方法,它们也更容易实现。专用的硬件被用于数字图像处理,例如,基于流水线的计算机体系结构在这方面取得了巨大的商业成功。今天,硬件解决方案被广泛的用于视频处理系统,但商业化的图像处理任务基本上仍以软件形式实现,运行在通用个人电脑上。

常用的信号处理技术

大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们中的一部分在二维情形下变得十分复杂。同时图像处理也具有自身一些新的概念,例如,连通性旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。

图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。

从一维信号处理扩展来的技术和概念

专用于二维(或更高维)的技术和概念

典型问题

  • 几何变换(geometric transformations):包括放大、缩小、旋转等。
  • 颜色处理(color):颜色空间的转化、亮度以及对比度的调节、颜色修正等。
  • 图像融合(image composite):多个图像的加、减、组合、拼接。
  • 降噪(image denoising):研究各种针对二维图像的去噪滤波器或者信号处理技术。
  • 边缘检测(edge detection):进行边缘或者其他局部特征提取。
  • 分割(image segmentation):依据不同标准,把二维图像分割成不同区域。
  • 图像编辑(image editing):和计算机图形学有一定交叉。
  • 图像配准(image registration):比较或集成不同条件下获取的图像。
  • 图像增强(image enhancement):
  • 图像数字水印(image watermarking):研究图像域的数据隐藏、加密、或认证。
  • 图像压缩(image compression):研究图像压缩。

应用

  • 摄影及印刷 (Photography and printing)
  • 卫星图像处理 (Satellite image processing)
  • 医学图像处理 (Medical image processing)
  • 面孔识别, 特征识别 (Face detection, feature detection, face identification)
  • 显微图像处理 (Microscope image processing)
  • 汽车障碍识别 (Car barrier detection)

软件工具

  • ImageJ [1]
  • OpenCV [2]
  • Rapidminer图像处理扩展 [3] -工具,图像处理和图像挖掘

相关相近领域

 

       计算机视觉是一门研究如何使机器“”的科学,更进一步的说,就是指用摄影机电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。

作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所 指的信息指夏农定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提 取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。

作为一个工程学科,计算机视觉寻求基于相关理论与模型来建立计算机视觉系统。这类系统的组成部分包括:

  1. 程序控制(例如工业机器人无人驾驶汽车
  2. 事件监测(例如图像监测
  3. 信息组织(例如图像数据库和图像序列的索引建立)
  4. 物体与环境建模(例如工业检查,医学图像分析和拓扑建模)
  5. 交感互动(例如人机互动的输入设备)

计算机视觉同样可以被看作是生物视觉的一个补充。在生物视觉领域中,人类和各种动物的视觉都得到了研究,从而建立了这些视觉 系统感知信息过程中所使用的物理模型。另一方面,在计算机视觉中,靠软件和硬件实现的人工智能系统得到了研究与描述。生物视 觉与计算机视觉进行的学科间交流为彼此都带来了巨大价值。

计算机视觉包含如下一些分支:画面重建,事件监测,目标跟踪,目标识别,机器学习,索引建立,图像恢复等。

目录

计算机视觉的发展现状

计算机视觉与其他领域的关系

计算机视觉领域的突出特点是其多样性与不完善性。

这一领域的先驱可追溯到更早的时候,但是直到20世纪70年代后期,当计算机的性能提高到足以处理诸如图像这样的大规模数据时,计算机视觉才得到了正式的关注和发展。然而这些发展往往起源于其他不同领域的需要,因而何谓“计算机视觉问题”始终没有得到正式定义,很自然地,“计算机视觉问题”应当被如何解决也没有成型的公式。

尽管如此,人们已开始掌握部分解决具体计算机视觉任务的方法,可惜这些方法通常都仅适用于一群狭隘的目标(如:脸孔、指纹、文字等),因而无法被广泛地应用于不同场合。

对这些方法的应用通常作为某些解决复杂问题的大规模系统的一个组成部分(例如医学图像的处理,工业制造中的质量控制与测量)。在计算机视觉的大多数实际应用当中,计算机被预设为解决特定的任务,然而基于机器学习的方法正日渐普及,一旦机器学习的研究进一步发展,未来“泛用型”的电脑视觉应用或许可以成真。

人工智能所研究的一个主要问题是:如何让系统具备“计划”和“决策能力”?从而使之完成特定的技术动作(例如:移动一个机器人通过某种特定环境)。这一问题便与计算机视觉问题息息相关。在这里,计算机视觉系统作为一个感知器,为决策提供信息。另外一些研究方向包括模式识别机器学习(这也隶属于人工智能领域,但与计算机视觉有着重要联系),也由此,计算机视觉时常被看作人工智能与计算机科学的一个分支。

物理是与计算机视觉有着重要联系的另一领域。

计算机视觉关注的目标在于充分理解电磁波——主要是可见光红外线部分——遇到物体表面被反射所形成的图像,而这一过程便是基于光学物理固态物理,一些尖端的图像感知系统甚至会应用到量子力学理论,来解析影像所表示的真实世界。同时,物理学中的很多测量难题也可以通过计算机视觉得到解决,例如流体运动。也由此,计算机视觉同样可以被看作是物理学的拓展。

另一个具有重要意义的领域是神经生物学,尤其是其中生物视觉系统的部分。

在整个20世纪中,人类对各种动物的眼睛、神经元、以及与视觉刺激相关的脑部组织都进行了广泛研究,这些研究得出了一些有关“天然的”视觉系统如何运作的描述(尽管仍略嫌粗略),这也形成了计算机视觉中的一个子领域——人们试图建立人工系统,使之在不同的复杂程度上模拟生物的视觉运作。同时计算机视觉领域中,一些基于机器学习的方法也有参考部分生物机制。

计算机视觉的另一个相关领域是信号处理。很多有关单元变量信号的处理方法,尤其对是时变信号的处理,都可以很自然的被扩展为计算机视觉中对二元变量信号或者多元变量信号的处理方法。但由于图像数据的特有属性,很多计算机视觉中发展起来的方法,在单元信号的处理方法中却找不到对应版本。这类方法的一个主要特征,便是他们的非线性以及图像信息的多维性,以上二点作为计算机视觉的一部分,在信号处理学中形成了一个特殊的研究方向。

除了上面提到的领域,很多研究课题同样可被当作纯粹的数学问题。例如,计算机视觉中的很多问题,其理论基础便是统计学最优化理论以及几何学

如何使既有方法通过各种软硬件实现,或说如何对这些方法加以修改,而使之获得合理的执行速度而又不损失足够精度,是现今电脑视觉领域的主要课题。

相邻领域的异同

计算机视觉图象处理图像分析机器人视觉机器视觉是彼此紧密关联的学科。如果你翻开带有上面这些名字的教材,你会发现在技术和应用领域上他们都有着相当大部分的重叠。这表明这些学科的基础理论大致是相同的,甚至让人怀疑他们是同一学科被冠以不同的名称。

然而,各研究机构,学术期刊,会议及公司往往把自己特别的归为其中某一个领域,于是各种各样的用来区分这些学科的特征便被提了出来。下面将给出一种区分方法,尽管并不能说这一区分方法完全准确。

计算机视觉的研究对象主要是映射到单幅或多幅图像上的三维场景,例如三维场景的重建。计算机视觉的研究很大程度上针对图像的内容。

图象处理图像分析的研究对象主要是二维图像,实现图像的转化,尤其针对像素级的操作,例如提高图像对比度,边缘提取,去噪声和几何变换如图像旋转。这一特征表明无论是图像处理还是图像分析其研究内容都和图像的具体内容无关。

机器视觉主要是指工业领域的视觉研究,例如自主机器人的视觉,用于检测和测量的视觉。这表明在这一领域通过软件硬件,图像感知与控制理论往往与图像处理得到紧密结合来实现高效的机器人控制或各种实时操作。

模式识别使用各种方法从信号中提取信息,主要运用统计学的理论。此领域的一个主要方向便是从图像数据中提取信息。

还有一个领域被称为成像技术。这一领域最初的研究内容主要是制作图像,但有时也涉及到图像分析和处理。例如,医学成像就包含大量的医学领域的图像分析。

对于所有这些领域,一个可能的过程是你在计算机视觉的实验室工作,工作中从事着图象处理,最终解决了机器视觉领域的问题,然后把自己的成果发表在了模式识别的会议上。

计算机视觉的经典问题

几乎在每个计算机视觉技术的具体应用都要解决一系列相同的问题。这些经典的问题包括:

识别

一个计算机视觉,图像处理和机器视觉所共有的经典问题便是判定一组图像数据中是否包含某个特定的物体,图像特征或运动状态。这一问题通常可以通过机器自动解决,但是到目前为止,还没有某个单一的方法能够广泛的对各种情况进行判定:在任意环境中识别任意物体。现有技术能够也只能够很好地解决特定目标的识别,比如简单几何图形识别,人脸识别,印刷或手写文件识别或者车辆识别。而且这些识别需要在特定的环境中,具有指定的光照,背景和目标姿态要求。

广义的识别在不同的场合又演化成了几个略有差异的概念:

  • 识别(狭义的):对一个或多个经过预先定义或学习的物体或物类进行辨识,通常在辨识过程中还要提供他们的二维位置或三维姿态。
  • 鉴别:识别辨认单一物体本身。例如:某一人脸的识别,某一指纹的识别。
  • 监测:从图像中发现特定的情况内容。例如:医学中对细胞或组织不正常技能的发现,交通监视仪器对过往车辆的发现。监测往往是通过简单的图象处理发现图像中的特殊区域,为后继更复杂的操作提供起点。

识别的几个具体应用方向:

  • 基于内容的图像提取在巨大的图像集合中寻找包含指定内容的所有图片。被指定的内容可以是多种形式,比如一个红色的大致是圆形的图案,或者一辆自行车。在这里对后一种内容的寻找显然要比前一种更复杂,因为前一种描述的是一个低级直观的视觉特征,而后者则涉及一个抽象概念(也可以说是高级的视觉特征),即‘自行车’,显然的一点就是自行车的外观并不是固定的。
  • 姿态评估:对某一物体相对于摄像机的位置或者方向的评估。例如:对机器臂姿态和位置的评估。
  • 光学字符识别对图像中的印刷或手写文字进行识别鉴别,通常的输出是将之转化成易于编辑的文档形式。

运动

基于序列图像的对物体运动的监测包含多种类型,诸如:

  • 自体运动:监测摄像机的三维刚性运动。
  • 图像跟踪:跟踪运动的物体。

场景重建

给定一个场景的二或多幅图像或者一段录像,场景重建寻求为该场景建立一个计算机模型/三维模型。最简单的情况便是生成一组三维空间中的点。更复杂的情况下会建立起完整的三维表面模型。

图像恢复

图像恢复的目标在于移除图像中的噪声,例如仪器噪声,模糊等

计算机视觉系统

计算机视觉系统的结构形式很大程度上依赖于其具体应用方向。有些是独立工作的,用于解决具体的测量或检测问题;也有些作为某个大型复杂系统的组成部分出现,比如和机械控制系统,数据库系统,人机接口设备协同工作。计算机视觉系统的具体实现方法同时也由其功能决定——是预先固定的抑或是在运行过程中自动学习调整。尽管如此,有些功能却几乎是每个计算机系统都需要具备的:

  • 图像获取:一幅数字图像是由一个或多个图像感知器产生,这里的感知器可以是各种光敏摄像机,包括遥感设备,X射线断层摄影仪,雷达,超声波接收器等。取决于不同的感知器,产生的图片可以是普通的二维图像,三维图组或者一个图像序列。图片的像素值往往对应于光在一个或多个光谱段上的强度(灰度图或彩色图),但也可以是相关的各种物理数据,如声波,电磁波或核磁共振的深度,吸收度或反射度。


  • 预处理:在对图像实施具体的计算机视觉方法来提取某种特定的信息前,一种或一些预处理往往被采用来使图像满足后继方法的要求。例如:
    • 二次取样保证图像坐标的正确
    • 平滑去噪来滤除感知器引入的设备噪声
    • 提高对比度来保证实现相关信息可以被检测到
    • 调整尺度空间使图像结构适合局部应用
  • 特征提取:从图像中提取各种复杂度的特征。例如:
更复杂的特征可能与图像中的纹理形状或运动有关。
  • 检测/分割:在图像处理过程中,有时会需要对图像进行分割来提取有价值的用于后继处理的部分,例如
    • 筛选特征点
    • 分割一或多幅图片中含有特定目标的部分
  • 高级处理:到了这一步,数据往往具有很小的数量,例如图像中经先前处理被认为含有目标物体的部分。这时的处理包括:
    • 验证得到的数据是否符合前提要求
    • 估测特定系数,比如目标的姿态,体积
    • 对目标进行分类

影响视觉系统的要件

  • 光源布局影响大需审慎考量。
  • 正确的选择镜组,考量倍率、空间、尺寸、失真… 。
  • 选择合适的摄影机(CCD),考量功能、规格、稳定性、耐用...。
  • 视觉软件开发需靠经验累积,多尝试、思考问题的解决途径。
  • 以创造精度的不断提升,缩短处理时间为最终目标。

=====================================================================================================================

参考wiki

图像处理与识别

阅读数 8901

图像处理算法分析

阅读数 102

没有更多推荐了,返回首页