linux内存机制_linux内存管理机制 - CSDN
精华内容
参与话题
  • Linux内存机制

    2019-03-16 13:06:58
    Linux 内存机制https://blog.csdn.net/tianlesoftware/article/details/5463790版权声明: https://blog.csdn.net/tianlesoftware/article/details/5463790 一. 内存使用说明 Free 命令相对于top 提供了更简洁的...

    原 Linux 内存机制https://blog.csdn.net/tianlesoftware/article/details/5463790版权声明: https://blog.csdn.net/tianlesoftware/article/details/5463790
      一. 内存使用说明
    Free 命令相对于top 提供了更简洁的查看系统内存使用情况:

    [root@rac1 ~]# free 
                 total       used       free     shared    buffers     cached
    Mem:       1035108   1008984      26124      0     124212     413000
    -/+ buffers/cache:        471772      563336
    Swap:       2096472   842320     1254152
      这里显示的单位是KB。
             在linux的内存分配机制中,优先使用物理内存,当物理内存还有空闲时(还够用),不会释放其占用内存,就算占用内存的程序已经被关闭了,该程序所占用的内存用来做缓存使用,对于开启过的程序、或是读取刚存取过得数据会比较快。
      Mem:表示物理内存统计。
    -/+ buffers/cached:表示物理内存的缓存统计
    Swap:表示硬盘上交换分区的使用情况。只有mem被当前进程实际占用完,即没有了buffers和cache时,才会使用到swap。
      Mem 行(第一行)数据说明:
           Total:1035108KB。表示物理内存总大小。
           Used:1008984KB。表示总计分配给缓存(包含buffers 与cache )使用的数量,但其中可能部分缓存并未实际使用。
           Free:26124KB。表示未被分配的内存。
           Shared:0kb。共享内存,一般系统不会用到。
           Buffers:124212KB。系统分配但未被使用的buffers 数量。
           Cached:413000KB。系统分配但未被使用的cache 数量。
      -/+ buffers/cache 行(第二行)数据说明:
           Used:471772kb,实际使用的buffers 与cache 总量,也是实际使用的内存总量。
           Free: 563336kb, 未被使用的buffers 与cache 和未被分配的内存之和,这就是系统当前实际可用内存。
      根据以上分析,可以得出一下结论:
    1.  实际可用内存大小:
           Free(-/+ buffers/cache行)= Free(Mem)+buffers(Mem)+Cached(Mem);
                                       563336 = 26124 + 124212+ 413000
      2.  已经分配的内存大小:
           Used(Mem) = Used(-/+ buffers/cache)+ buffers(Mem) + Cached(Mem)
                  1008984kb = 471772 + 124212 +413000
      3.  物理内存总大小
           total(Mem) = used(-/+ buffers/cache) + free(-/+ buffers/cache)
                         1035108 = 471772 + 563336
        二. Swap配置对性能的影响
           分配太多的Swap空间会浪费磁盘空间,而Swap空间太少,则系统会发生错误。 如果系统的物理内存用光了,系统就会跑得很慢,但仍能运行;如果Swap空间用光了,那么系统就会发生错误。例如,Web服务器能根据不同的请求数量衍生出多个服务进程(或线程),如果Swap空间用完,则服务进程无法启动,通常会出现“application is out of memory”的错误,严重时会造成服务进程的死锁。因此Swap空间的分配是很重要的。

           通常情况下,Swap空间应大于或等于物理内存的大小,最小不应小于64M,通常Swap空间的大小应是物理内存的2-2.5倍。但根据不同的应用,应有不同的配置:如果是小的桌面系统,则只需要较小的Swap空间,而大的服务器系统则视情况不同需要不同大小的Swap空间。特别是数据库服务器和Web服务器,随着访问量的增加,对Swap空间的要求也会增加,一般来说对于4G 以下的物理内存,配置2倍的swap,4G 以上配置1倍。

    另外,Swap分区的数量对性能也有很大的影响。因为Swap交换的操作是磁盘IO的操作,如果有多个Swap交换区,Swap空间的分配会以轮流的方式操作于所有的Swap,这样会大大均衡IO的负载,加快Swap交换的速度。如果只有一个交换区,所有的交换操作会使交换区变得很忙,使系统大多数时间处于等待状态,效率很低。用性能监视工具就会发现,此时的CPU并不很忙,而系统却慢。这说明,瓶颈在IO上,依靠提高CPU的速度是解决不了问题的。
      三.  Linux 内存机制
    Linux支持虚拟内存(Virtual Mmemory),虚拟内存是指使用磁盘当作RAM的扩展,这样可用的内存的大小就相应地增大了。内核会将暂时不用的内存块的内容写到硬盘上,这样一来,这块内存就可用于其它目的。当需要用到原始的内容时,它们被重新读入内存。这些操作对用户来说是完全透明的;Linux下运行的程序只是看到有大量的内存可供使用而并没有注意到时不时它们的一部分是驻留在硬盘上的。当然,读写硬盘要比直接使用真实内存慢得多(要慢数千倍),所以程序就不会象一直在内存中运行的那样快。用作虚拟内存的硬盘部分被称为交换空间(Swap Space)。
      一般,在交换空间中的页面首先被换入内存;如果此时没有足够的物理内存来容纳它们又将被交换出来(到其他的交换空间中)。如果没有足够的虚拟内存来容纳所有这些页面,Linux就会波动而不正常;但经过一段较长的时间Linux会恢复,但此时系统已不可用了。
           有时,尽管有许多的空闲内存,仍然会有许多的交换空间正被使用。这种情况是有可能发生的,例如如果在某一时刻有进行交换的必要,但后来一个占用很多物理内存的大进程结束并释放内存时。被交换出的数据并不会自动地交换进内存,除非有这个需要时。此时物理内存会在一段时间内保持空闲状态。对此并没有什么可担心的,但是知道了是怎么一回事,也就无所谓了。
           许多操作系统使用了虚拟内存的方法。因为它们仅在运行时才需要交换空间,以解决不会在同一时间使用交换空间,因此,除了当前正在运行的操作系统的交换空间,其它的就是一种浪费。所以让它们共享一个交换空间将会更有效率。
      注意:如果会有几个人同时使用这个系统,他们都将消耗内存。然而,如果两个人同时运行一个程序,内存消耗的总量并不是翻倍,因为代码页以及共享的库只存在一份。

           Linux系统常常动不动就使用交换空间,以保持尽可能多的空闲物理内存。即使并没有什么事情需要内存,Linux也会交换出暂时不用的内存页面。这可以避免等待交换所需的时间:当磁盘闲着,就可以提前做好交换。可以将交换空间分散在几个硬盘之上。针对相关磁盘的速度以及对磁盘的访问模式,这样做可以提高性能。

           与访问物理内存相比,磁盘的读写是很慢的。另外,在相应较短的时间内多次读磁盘同样的部分也是常有的事。例如,某人也许首先阅读了一段E-mail消息,然后为了答复又将这段消息读入编辑器中,然后又在将这个消息拷贝到文件夹中时,使得邮件程序又一次读入它。或者考虑一下在一个有着许多用户的系统中 ls命令会被使用多少次。通过将信息从磁盘上仅读入一次并将其存于内存中,除了第一次读以外,可以加快所有其它读的速度。这叫作磁盘缓冲(Disk Buffering),被用作此目的的内存称为高速缓冲(Buffer Cache)。但是,由于内存是一种有限而又不充足的资源,高速缓冲不可能做的很大(它不可能包容要用到的所有数据)。当缓冲充满了数据时,其中最长时间不用的数据将被舍弃以腾出内存空间用于新的数据。

           对写磁盘操作来说磁盘缓冲技术同样有效。一方面,被写入磁盘的数据常常会很快地又被读出(例如,原代码文件被保存到一个文件中,又被编译器读入),所以将要被写的数据放入缓冲中是个好主意。另一方面,通过将数据放入缓冲中,而不是将其立刻写入磁盘,程序可以加快运行的速度。以后,写的操作可以在后台完成,而不会拖延程序的执行。

    大多数操作系统都有高速缓冲(尽管可能称呼不同),但是并不是都遵守上面的原理。有些是直接写(Write-Through):数据将被立刻写入磁盘(当然,数据也被放入缓存中)。如果写操作是在以后做的,那么该缓存被称为后台写(Write-Back)。后台写比直接写更有效,但也容易出错:如果机器崩溃,或者突然掉电,缓冲中改变过的数据就被丢失了。如果仍未被写入的数据含有重要的薄记信息,这甚至可能意味着文件系统(如果有的话)已不完整。

           针对以上的原因,出现了很多的日志文件系统,数据在缓冲区修改后,同时会被文件系统记录修改信息,这样即使此时系统掉电,系统重启后会首先从日志记录中恢复数据,保证数据不丢失。当然这些问题不再本文的叙述范围。

           由于上述原因,在使用适当的关闭过程之前,绝对不要关掉电源,Sync命令倾空(Flushes)缓冲,也即,强迫所有未被写的数据写入磁盘,可用以确定所有的写操作都已完成。在传统的UNIX系统中,有一个叫做update的程序运行于后台,每隔30秒做一次sync操作,因此通常无需手工使用sync命令了。Linux另外有一个后台程序,Bdflush,这个程序执行更频繁的但不是全面的同步操作,以避免有时sync的大量磁盘I/O操作所带来的磁盘的突然冻结。

           在Linux中,Bdflush是由update启动的。通常没有理由来担心此事,但如果由于某些原因bdflush进程死掉了,内核会对此作出警告,此时你就要手工地启动它了(/sbin/update)。

    缓存(Cache)实际并不是缓冲文件的,而是缓冲块的,块是磁盘I/O操作的最小单元(在Linux中,它们通常是1KB)。这样,目录、超级块、其它文件系统的薄记数据以及非文件系统的磁盘数据都可以被缓冲了。缓冲的效力主要是由它的大小决定的。缓冲太小的话等于没用。它只能容纳一点数据,因此在被重用时,所有缓冲的数据都将被倾空。实际的大小依赖于数据读写的频次、相同数据被访问的频率。只有用实验的方法才能知道。
           如果缓存有固定的大小,那么缓存太大了也不好,因为这会使得空闲的内存太小而导致进行交换操作(这同样是慢的)。为了最有效地使用实际内存,Linux自动地使用所有空闲的内存作为高速缓冲,当程序需要更多的内存时,它也会自动地减小缓冲的大小。

           这就是一般情况下Linux内存的一般机制,真正的Linux内存的运行机制远远比这个复杂。
          注: 整理自网络
    -------------------------------------------------------------------------------------------------------
    QQ: 492913789
    Email: ahdba@qq.com
    Blog: http://www.cndba.cn/dave
    DBA1 群:62697716(满);   DBA2 群:62697977(满)   DBA3 群:62697850(满)  
    DBA 超级群:63306533(满);  DBA4 群: 83829929  DBA5群: 142216823   
    DBA6 群:158654907  聊天 群:40132017   聊天2群:69087192
    --加群需要在备注说明Oracle表空间和数据文件的关系,否则拒绝申请
     https://img-blog.csdnimg.cn/20190217105710569.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTEwNzgxNDE=,size_16,color_FFFFFF,t_70《算法导论 第三版英文版》_高清中文版.pdf
    https://pan.baidu.com/s/17D1kXU6dLdU0YwHM2cvNMw
    《深度学习入门:基于Python的理论与实现》_高清中文版.pdf
    https://pan.baidu.com/s/1IeVs35f3gX5r6eAdiRQw4A
    《深入浅出数据分析》_高清中文版.pdf
    https://pan.baidu.com/s/1GV-QNbtmjZqumDkk8s7z5w
    《Python编程:从入门到实践》_高清中文版.pdf
    https://pan.baidu.com/s/1GUNSg4mdpeOf1LC_MjXunQ
    《Python科学计算》_高清中文版.pdf
    https://pan.baidu.com/s/1-hDKhK-7rDDFll_UFpKmpw

    展开全文
  • linux 内存分配机制

    千次阅读 2015-10-28 17:06:23
    这几天在观察apache使用内存情况,所以特意了解了下linux内存机制,发现一篇写得还不错。转来看看。 一般来说在ps aux中看到的rss就是进程所占用的物理内存。但是如果将所有程序的rss加起来的话。会发现比实际的...
    这几天在观察apache使用内存情况,所以特意了解了下linux的内存机制,发现一篇写得还不错。转来看看。
    一般来说在ps aux中看到的rss就是进程所占用的物理内存。但是如果将所有程序的rss加起来的话。会发现比实际的内存还要大很多,这个是由于rss还包括了共享的部分。这个可以通过pmap -d PID来看到具体情况。
    一. 内存使用说明
    Free 命令相对于top 提供了更简洁的查看系统内存使用情况:
    1 [root@rac1 ~]# free
    2 total       used       free     shared    buffers     cache
    3 Mem:       1035108   1008984      26124      0     124212     413000
    4 -/+ buffers/cache:        471772      563336
    5 Swap:       2096472   842320     1254152
    这里显示的单位是KB。
    在linux的内存分配机制中,优先使用物理内存,当物理内存还有空闲时(还够用),不会释放其占用内存,就算占用内存的程序已经被关闭了,该程序所占用的内存用来做缓存使用,对于开启过的程序、或是读取刚存取过得数据会比较快。
    Mem:表示物理内存统计。
    -/+ buffers/cached:表示物理内存的缓存统计
    Swap:表示硬盘上交换分区的使用情况。只有mem被当前进程实际占用完,即没有了buffers和cache时,才会使用到swap。
    Mem 行(第一行)数据说明:
    Total:1035108KB。表示物理内存总大小。
    Used:1008984KB。表示总计分配给缓存(包含buffers 与cache )使用的数量,但其中可能部分缓存并未实际使用。
    Free:26124KB。表示未被分配的内存。
    Shared:0kb。共享内存,一般系统不会用到。
    Buffers:124212KB。系统分配但未被使用的buffers 数量。
    Cached:413000KB。系统分配但未被使用的cache 数量。
    -/+ buffers/cache 行(第二行)数据说明:
    Used:471772kb,实际使用的buffers 与cache 总量,也是实际使用的内存总量。
    Free: 563336kb, 未被使用的buffers 与cache 和未被分配的内存之和,这就是系统当前实际可用内存。
    根据以上分析,可以得出一下结论:
    1.  实际可用内存大小:
    Free(-/+ buffers/cache行)= Free(Mem)+buffers(Mem)+Cached(Mem);
    563336 = 26124 + 124212+ 413000
    2.  已经分配的内存大小:
    Used(Mem) = Used(-/+ buffers/cache)+ buffers(Mem) + Cached(Mem)
    1008984kb = 471772 + 124212 +413000
    3.  物理内存总大小
    total(Mem) = used(-/+ buffers/cache) + free(-/+ buffers/cache)
    1035108 = 471772 + 563336
    二. Swap配置对性能的影响
    分配太多的Swap空间会浪费磁盘空间,而Swap空间太少,则系统会发生错误。 如果系统的物理内存用光了,系统就会跑得很慢,但仍能运行;如果Swap空间用光了,那么系统就会发生错误。例如,Web服务器能根据不同的请求数量衍生 出多个服务进程(或线程),如果Swap空间用完,则服务进程无法启动,通常会出现“application is out of memory”的错误,严重时会造成服务进程的死锁。因此Swap空间的分配是很重要的。
    通常情况下,Swap空间应大于或等于物理内存的大小,最小不应小于64M,通常Swap空间的大小应是物理内存的2-2.5倍。但根据不同的应用,应有 不同的配置:如果是小的桌面系统,则只需要较小的Swap空间,而大的服务器系统则视情况不同需要不同大小的Swap空间。特别是数据库服务器和Web服 务器,随着访问量的增加,对Swap空间的要求也会增加,一般来说对于4G 以下的物理内存,配置2倍的swap,4G 以上配置1倍。
    另外,Swap分区的数量对性能也有很大的影响。因为Swap交换的操作是磁盘IO的操作,如果有多个Swap交换区,Swap空间的分配会以轮流 的方式操作于所有的Swap,这样会大大均衡IO的负载,加快Swap交换的速度。如果只有一个交换区,所有的交换操作会使交换区变得很忙,使系统大多数 时间处于等待状态,效率很低。用性能监视工具就会发现,此时的CPU并不很忙,而系统却慢。这说明,瓶颈在IO上,依靠提高CPU的速度是解决不了问题 的。
    三.  Linux 内存机制
    Linux支持虚拟内存(Virtual Mmemory),虚拟内存是指使用磁盘当作RAM的扩展,这样可用的内存的大小就相应地增大了。内核会将暂时不用的内存块的内容写到硬盘上,这样一来, 这块内存就可用于其它目的。当需要用到原始的内容时,它们被重新读入内存。这些操作对用户来说是完全透明的;Linux下运行的程序只是看到有大量的内存 可供使用而并没有注意到时不时它们的一部分是驻留在硬盘上的。当然,读写硬盘要比直接使用真实内存慢得多(要慢数千倍),所以程序就不会象一直在内存中运 行的那样快。用作虚拟内存的硬盘部分被称为交换空间(Swap Space)。
    一般,在交换空间中的页面首先被换入内存;如果此时没有足够的物理内存来容纳它们又将被交换出来(到其他的交换空间中)。如果没有足够的虚拟内存来容纳所有这些页面,Linux就会波动而不正常;但经过一段较长的时间Linux会恢复,但此时系统已不可用了。
    有 时,尽管有许多的空闲内存,仍然会有许多的交换空间正被使用。这种情况是有可能发生的,例如如果在某一时刻有进行交换的必要,但后来一个占用很多物理内存 的大进程结束并释放内存时。被交换出的数据并不会自动地交换进内存,除非有这个需要时。此时物理内存会在一段时间内保持空闲状态。对此并没有什么可担心 的,但是知道了是怎么一回事,也就无所谓了。
    许多操作系统使用了虚拟内存的方法。因为它们仅在运行时才需要交换空间,以解决不会在同一时间使用交换空间,因此,除了当前正在运行的操作系统的交换空间,其它的就是一种浪费。所以让它们共享一个交换空间将会更有效率。
    注意:如果会有几个人同时使用这个系统,他们都将消耗内存。然而,如果两个人同时运行一个程序,内存消耗的总量并不是翻倍,因为代码页以及共享的库只存在一份。
    Linux系统常常动不动就使用交换空间,以保持尽可能多的空闲物理内存。即使并没有什么事情需要内存,Linux也会交换出暂时不用的内存页面。这可以 避免等待交换所需的时间:当磁盘闲着,就可以提前做好交换。可以将交换空间分散在几个硬盘之上。针对相关磁盘的速度以及对磁盘的访问模式,这样做可以提高 性能。
    与访问物理内存相比,磁盘的读写是很慢的。另外,在相应较短的时间内多次读磁盘同样的部分也是常有的事。例如,某人也许首先阅读了一段E-mail消息, 然后为了答复又将这段消息读入编辑器中,然后又在将这个消息拷贝到文件夹中时,使得邮件程序又一次读入它。或者考虑一下在一个有着许多用户的系统中 ls命令会被使用多少次。通过将信息从磁盘上仅读入一次并将其存于内存中,除了第一次读以外,可以加快所有其它读的速度。这叫作磁盘缓冲(Disk Buffering),被用作此目的的内存称为高速缓冲(Buffer Cache)。但是,由于内存是一种有限而又不充足的资源,高速缓冲不可能做的很大(它不可能包容要用到的所有数据)。当缓冲充满了数据时,其中最长时间 不用的数据将被舍弃以腾出内存空间用于新的数据。
    对写磁盘操作来说磁盘缓冲技术同样有效。一方面,被写入磁盘的数据常常会很快地又被读出(例如,原代码文件被保存到一个文件中,又被编译器读入),所以将 要被写的数据放入缓冲中是个好主意。另一方面,通过将数据放入缓冲中,而不是将其立刻写入磁盘,程序可以加快运行的速度。以后,写的操作可以在后台完成, 而不会拖延程序的执行。
    大多数操作系统都有高速缓冲(尽管可能称呼不同),但是并不是都遵守上面的原理。有些是直接写(Write-Through):数据将被立刻写入磁 盘(当然,数据也被放入缓存中)。如果写操作是在以后做的,那么该缓存被称为后台写(Write-Back)。后台写比直接写更有效,但也容易出错:如果 机器崩溃,或者突然掉电,缓冲中改变过的数据就被丢失了。如果仍未被写入的数据含有重要的薄记信息,这甚至可能意味着文件系统(如果有的话)已不完整。
    针对以上的原因,出现了很多的日志文件系统,数据在缓冲区修改后,同时会被文件系统记录修改信息,这样即使此时系统掉电,系统重启后会首先从日志记录中恢复数据,保证数据不丢失。当然这些问题不再本文的叙述范围。
    由于上述原因,在使用适当的关闭过程之前,绝对不要关掉电源,Sync命令倾空(Flushes)缓冲,也即,强迫所有未被写的数据写入磁盘,可用以确定 所有的写操作都已完成。在传统的UNIX系统中,有一个叫做update的程序运行于后台,每隔30秒做一次sync操作,因此通常无需手工使用sync 命令了。Linux另外有一个后台程序,Bdflush,这个程序执行更频繁的但不是全面的同步操作,以避免有时sync的大量磁盘I/O操作所带来的磁 盘的突然冻结。
    在Linux中,Bdflush是由update启动的。通常没有理由来担心此事,但如果由于某些原因bdflush进程死掉了,内核会对此作出警告,此时你就要手工地启动它了(/sbin/update)。
    缓存(Cache)实际并不是缓冲文件的,而是缓冲块的,块是磁盘I/O操作的最小单元(在Linux中,它们通常是1KB)。 这样,目录、超级块、其它文件系统的薄记数据以及非文件系统的磁盘数据都可以被缓冲了。缓冲的效力主要是由它的大小决定的。缓冲太小的话等于没用。它只能 容纳一点数据,因此在被重用时,所有缓冲的数据都将被倾空。实际的大小依赖于数据读写的频次、相同数据被访问的频率。只有用实验的方法才能知道。
    如果缓存有固定的大小,那么缓存太大了也不好,因为这会使得空闲的内存太小而导致进行交换操作(这同样是慢的)。为了最有效地使用实际内存,Linux自动地使用所有空闲的内存作为高速缓冲,当程序需要更多的内存时,它也会自动地减小缓冲的大小。
    这就是一般情况下Linux内存的一般机制,真正的Linux内存的运行机制远远比这个复杂。
    展开全文
  • linux内存机制整理

    千次阅读 2018-04-18 19:31:51
    这是Linux内存管理的一个优秀特性,在这方 面,区别于Windows的内存管理。主要特点是,无论物理内存有多大,Linux 都将其充份利用,将一些程序调用过的硬盘数据读入内存,利用内存读写的高速特性来提高Linux系统的...
    经常遇到一些刚接触Linux的新手会问内存占用怎么那么多?
    在Linux中经常发现空闲内存很少,似乎所有的内存都被系统占用了,表面感觉是内存不够用了,其实不然。这是Linux内存管理的一个优秀特性,在这方 面,区别于Windows的内存管理。主要特点是,无论物理内存有多大,Linux 都将其充份利用,将一些程序调用过的硬盘数据读入内存,利用内存读写的高速特性来提高Linux系统的数据访问性能。而Windows是只在需要内存时, 才为应用程序分配内存,并不能充分利用大容量的内存空间。换句话说,每增加一些物理内存,Linux都将能充分利用起来,发挥了硬件投资带来的好处,而 Windows只将其做为摆设,即使增加8GB甚至更大。

    Linux的这一特性,主要是利用空闲的物理内存,划分出一部份空间,做为cache、buffers ,以此提高数据访问性能。

    页高速缓存(cache)是Linux内核实现的一种主要磁盘缓存。它主要用来减少对磁盘的I/O操作。具体地讲,是通过把磁盘中的数据缓存到物理内存中,把对磁盘的访问变为对物理 内存的访问。

    磁盘高速缓存的价值在于两个方面:第一,访问磁盘的速度要远远低于访问内存的速度,因此,从内存访问数据比从磁盘访问速度更快。第二,数据一旦被访 问,就很有可能在短期内再次被访问到。

    下面来了解下Linux内存管理机制:
    一 物理内存和虚拟内存
    我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念。

    物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的磁盘空间被称为交换空间(Swap Space)。

    作为物理内存的扩展,linux会在物理内存不足时,使用交换分区的虚拟内存,更详细的说,就是内核会将暂时不用的内存块信息写到交换空间,这样以来,物理内存得到了释放,这块内存就可以用于其它目的,当需要用到原始的内容时,这些信息会被重新从交换空间读入物理内存。

    Linux的内存管理采取的是分页存取机制,为了保证物理内存能得到充分的利用,内核会在适当的时候将物理内存中不经常使用的数据块自动交换到虚拟内存中,而将经常使用的信息保留到物理内存。

    要深入了解linux内存运行机制,需要知道下面提到的几个方面:
    1. Linux系统会不时的进行页面交换操作,以保持尽可能多的空闲物理内存,即使并没有什么事情需要内存,Linux也会交换出暂时不用的内存页面。这可以避免等待交换所需的时间。
    2. Linux 进行页面交换是有条件的,不是所有页面在不用时都交换到虚拟内存,linux内核根据”最近最经常使用“算法,仅仅将一些不经常使用的页面文件交换到虚拟 内存,有时我们会看到这么一个现象:linux物理内存还有很多,但是交换空间也使用了很多。其实,这并不奇怪,例如,一个占用很大内存的进程运行时,需 要耗费很多内存资源,此时就会有一些不常用页面文件被交换到虚拟内存中,但后来这个占用很多内存资源的进程结束并释放了很多内存时,刚才被交换出去的页面 文件并不会自动的交换进物理内存,除非有这个必要,那么此刻系统物理内存就会空闲很多,同时交换空间也在被使用,就出现了刚才所说的现象了。关于这点,不 用担心什么,只要知道是怎么一回事就可以了。
    3. 交换空间的页面在使用时会首先被交换到物理内存,如果此时没有足够的物理内存来容纳这些页 面,它们又会被马上交换出去,如此以来,虚拟内存中可能没有足够空间来存储这些交换页面,最终会导致linux出现假死机、服务异常等问题,linux虽 然可以在一段时间内自行恢复,但是恢复后的系统已经基本不可用了。
    因此,合理规划和设计Linux内存的使用,是非常重要的.

    二 内存的监控
    作为一名Linux系统管理员,监控内存的使用状态是非常重要的,通过监控有助于了解内存的使用状态,比如内存占用是否正常,内存是否紧缺等等,监控内存最常使用的命令有free、top等,下面是某个系统free的输出:
    [root@linuxeye ~]# free
                 total       used       free     shared    buffers     cached
    Mem:       3894036    3473544     420492          0      72972    1332348
    -/+ buffers/cache:    2068224    1825812
    Swap:      4095992     906036    3189956
    每个选项的含义:
    第一行:
    total:物理内存的总大小
    used:已经使用的物理内存大小
    free:空闲的物理内存大小
    shared:多个进程共享的内存大小
    buffers/cached:磁盘缓存的大小

    第二行Mem:代表物理内存使用情况
    第三行(-/+ buffers/cached):代表磁盘缓存使用状态
    第四行:Swap表示交换空间内存使用状态

    free命令输出的内存状态,可以通过两个角度来查看:一个是从内核的角度来看,一个是从应用层的角度来看的

    从内核的角度来查看内存的状态
    就是内核目前可以直接分配到,不需要额外的操作,即为上面free命令输出中第二行Mem项的值,可以看出,此系统物理内存有3894036K,空闲的内存只有420492K,也就是40M多一点,我们来做一个这样的计算:
    3894036 - 3473544 = 420492
    其实就是总的物理内存减去已经使用的物理内存得到的就是空闲的物理内存大小,注意这里的可用内存值420492并不包含处于buffers和cached状态的内存大小。
    如果你认为这个系统空闲内存太小,那你就错了,实际上,内核完全控制着内存的使用情况,Linux会在需要内存的时候,或在系统运行逐步推进时,将buffers和cached状态的内存变为free状态的内存,以供系统使用。

    从应用层的角度来看系统内存的使用状态
    也就是Linux上运行的应用程序可以使用的内存大小,即free命令第三行 -/+ buffers/cached 的输出,可以看到,此系统已经使用的内存才2068224K,而空闲的内存达到1825812K,继续做这样一个计算:
    420492+(72972+1332348)=1825812
    通过这个等式可知,应用程序可用的物理内存值是Mem项的free值加上buffers和cached值之和,也就是说,这个free值是包括buffers和cached项大小的,对于应用程序来说,buffers/cached占有的内存是可用的,因为buffers/cached是为了提高文件读取的性能,当应用程序需要用到内存的时候,buffers/cached会很快地被回收,以供应用程序使用

    buffers与cached的异同
    在Linux 操作系统中,当应用程序需要读取文件中的数据时,操作系统先分配一些内存,将数据从磁盘读入到这些内存中,然后再将数据分发给应用程序;当需要往文件中写 数据时,操作系统先分配内存接收用户数据,然后再将数据从内存写到磁盘上。然而,如果有大量数据需要从磁盘读取到内存或者由内存写入磁盘时,系统的读写性 能就变得非常低下,因为无论是从磁盘读数据,还是写数据到磁盘,都是一个很消耗时间和资源的过程,在这种情况下,Linux引入了buffers和 cached机制。

    buffers与cached都是内存操作,用来保存系统曾经打开过的文件以及文件属性信息,这样当操作系统需要读取某些文件时,会首先在buffers 与cached内存区查找,如果找到,直接读出传送给应用程序,如果没有找到需要数据,才从磁盘读取,这就是操作系统的缓存机制,通过缓存,大大提高了操 作系统的性能。但buffers与cached缓冲的内容却是不同的。

    buffers是用来缓冲块设备做的,它只记录文件系统的元数据(metadata)以及 tracking in-flight pages,而cached是用来给文件做缓冲。更通俗一点说:buffers主要用来存放目录里面有什么内容,文件的属性以及权限等等。而cached直接用来记忆我们打开过的文件和程序。

    为了验证我们的结论是否正确,可以通过vi打开一个非常大的文件,看看cached的变化,然后再次vi这个文件,感觉一下两次打开的速度有何异同,是不是第二次打开的速度明显快于第一次呢?
    接着执行下面的命令:
    find /* -name  *.conf
    看看buffers的值是否变化,然后重复执行find命令,看看两次显示速度有何不同。

    Linux操作系统的内存运行原理,很大程度上是根据服务器的需求来设计的,例如系统的缓冲机制会把经常使用到的文件和数据缓存在cached 中,linux总是在力求缓存更多的数据和信息,这样再次需要这些数据时可以直接从内存中取,而不需要有一个漫长的磁盘操作,这种设计思路提高了系统的整 体性能。

    通过本文,你可以了解: 1. 存储器硬件结构; 2.分段以及对应的组织方式; 3.分页以及对应的组织方式。 注1:本文以Linux内核2.6.32.59本版为例,其对应的代码可以在 http://www.kernel.org/

    通过本文,你可以了解:
    1. 存储器硬件结构;
    2.分段以及对应的组织方式;
    3.分页以及对应的组织方式。
    注1:本文以Linux内核2.6.32.59本版为例,其对应的代码可以在http://www.kernel.org/pub/linux/kernel/v2.6/longterm/v2.6.32/linux-2.6.32.59.tar.bz2找到。
    注2:本文所有的英文专有名词都是我随便翻译的,请对照英文原文进行理解。
    注3:推荐使用Source Insight进行源码分析。

    内存组织
    计算机内存属于随机存储器(RAM),目前PC机广泛使用的是DDR

    SDRAM,即“双倍速率同步动态随机存储器”,其本质上仍然是由n bits*m KB个内存芯片组成的,比如如果我们需要8位64KB的内存,则我们就需要2*8=16块4bits*8KB的内存块。由于计算机通常是以字节(Byte)进行数据交换的,所以对内存的地址编码一般使用字节,如上我们有64KB内存,则其地址编码为0×0000~0xFFFF,称为物理地址。对于32位机来说,由于其“地址寄存器(AR)”是32位,也就限制了其内存的最大寻址范围是2^32=4GB。

    Linux将物理地址按4KB的大小划分成“帧(Frame)”。为什么是4KB?因为每一个帧都需要用一个C结构体来描述,称之为“帧描述单元(Frame Discriptor)”,如果太小,帧描述单元显然太多了,如果太大,那么在内存分配时又会造成“内碎片(InnerFragments)”。早些时候,计算机的内存址都是直接映射的,由于程序里的地址是写死的,这就意味着每段程序每次都只能映射对应的地址空间。这无论对程序设计者与系统都是相当大的负担。Linux使用“分段”加“分页”来解决此问题。由于它们的存在,内存地址进入了逻辑地址时代。Linux有三种地址:逻辑地址(LogicAddress)、线性地址(Linear Address)与物理地址(Physics Address)。其关系如下:

    另外,Linux支持众多CPU架构,这里只研究X86的,对应的源代码为:…/X86/… 路径。

    Linux中的分段
    Linux 并不使用太多的分段,原因是某些RISC机器对分段的支持不好。为此Linux的分段都存在“全局描述表(GDT)”中,GDT是一个全局 desc_struct数组(位于linux-2.6.32.59\arch\x86\include\asm),其结构如下:

    #define GDT_ENTRIES 16  
      
    struct desc_struct gdt[GDT_ENTRIES];  
      
    struct desc_struct {  
        union {  
            struct {  
                unsigned int a;  
                unsigned int b;  
            };  
            struct {  
                u16 limit0; // 段大小  
                u16 base0; // 段起始位置  
                unsigned base1: 8, type: 4, s: 1, dpl: 2, p: 1; // type表示段类型,占4位;dpl指的段运行权限,占2位  
                unsigned limit: 4, avl: 1, l: 1, d: 1, g: 1, base2: 8; //d 表示内存地址位宽,占1位  
            };  
        };  
    } __attribute__((packed));  
    所以我们可以看出,段描述结构体占8个字节,至于里面的a,b,那是老的方式,后来使用C++ Struts的Bit Fields后更方便了。type类型由以下几种:
    enum {  
        DESC_TSS = 0×9,  
        DESC_LDT = 0×2,  
        DESCTYPE_S = 0×10,  /* !system */  
    };
    Linux主要使用以下几种段:
    • 内核代码段(Kernel Code Segment):type=10,dpl=0
    • 内核数据段(Kernel Data Segment):type=2,dpl=0
    • 用户代码段(User Code Segment):type=10,dpl=3
    • 用户数据段(User Data Segment):type=2,dpl=3
    • 任务状态段(Task State Segment),每进程一个:type=9,dpl=3
    其它类型可以参见linux-2.6.32.59\arch\x86\include\asm\segment.h,里面有非常详细的说明。

    它们都存储在“全局描述符表(GDT)”。Linux本身并不使用“局部描述符表(LDT)”,当一个进程被创建时,其指向的是一个默认的LDT,不过系统并不阻止进程创建它。也就是说一个进程最多两个段描述符:TSS与LDT。由于Segment Selector为16位(为什么只有16位,这个就是历史原因了,由于X86在Real Mode下段地址只有20位,其中有效的就是16位,详见:x86

    memory segmentation,但Linux段内偏移地址高达32位,所以线性地址总共是48位),其中有效的索引位仅有13位,所以GDT的最大长度为213-1=8192,除去系统保留的12个,留给进程的只有8180个入口,那么就意味Linux进程的最大数为8180/2=4090。需要注意的是,进程在创建的时候并不会马上创建自己的LDT,其指向的是GDT一个默认的LDT,里面的SD为null。只有在需要的时候进程才创建自己的LDT并把它放入GDT中。所以不管是LDT也好,TSS也好,它们都存放在GDT里面。而对于UCS与UDS,所有的进程共享一个。这样地址空间不会重复吗?不会,因为线性不是最终的物理地址,每个进程还有自己的页表,所以最终映射到物理地址是不同的。

    下面我们来看看段中地址是如何转换的。假设我们需要访问内核数据段的0×00124部分,由代码知其GDT的入口为13,那么其对应的内存地址=gdtr+13*8+0×00124,假设gptr为0×02000,则最终的结果为0×02228。gdtr是一个寄存器,其为48位,用来保存GDT的第一个字节线性地址与表限。其过程如图所示:
    图片来源于《Understand The Linux Kernel》

    分页
    相对于分段来说,分页更主流更流行一些。原因是其更灵活,其能把不同的线性地址映射到同一个物理地址上,缺点是内存必须以页大小的整数倍分配。按现在主流的4KB一页来说,如果程序只申请100B的数据,那内存浪费还是相当的大。为此,Linux使用了一种称为Slab的方法来解决这个问题,后面的文章会讲到。

    因为页表本身也需要存储空间,按每页32B来算,对于4GB内存,每页4KB,共有1M页,则页表的大小为32MB,这显然不可以接受,所以后来出现了多级页表这个概念。2004年后Linux版本使用的是四级页表:第一级叫“全局目录(Page

    Global Directory)“、第二级叫“页上级目录(Page

    Upper Directory)”、第三级叫”页中间目录(Page

    Middle Derectory)”、第四级叫”页面表(Page

    Table Entry)”,最后页内偏移量“offset”,如下图:

    图中的cr3是一个寄存器,它存储“Global DIR”的地址。当进程切换发生时,它将被保存在TSS中,前面说过了TSS段表是每个进程一个。分页在Linux内使用的地方很多,特别是进程内的地址转换。分页有硬件支持的,特别是旁路转换缓冲(Translation

    Lookaside Buffer)的出现,使用即使使用三级页表的Linux在地转转换中的实际效果也是非常好的。与段表所有的进程都共用一个的是,每个进程都拥有自己的分页。其实也正是因为所有进程都共享一个段表,每个进程才必须有自己的页表,否则相同的linear地址如何映射到不同的物理地址去?下面我们着重来研究一下Linux系统中是如何表示分页中所用到的数据结构的。

    每个“帧”在Linux中都是以一个名为page(位于linux-2.6.32.59\include\linux\Mm_types.h)的结构体来存储的。所有的页被放在一个类型为page名为mem_map的数组中(位于linux-2.6.32.59\mm\Memory.c)。代码如下(为了显示方便,仅列出部分:
    struct page {  
    unsigned long flags;          /* 帧的标志位,用枚举pageflags(位于:linux-2.6.32.59\include\linux\Page-flags.h)表示,每个值的意义详见注释 */  
      
        atomic_t _count;        /* 该帧被引用的数量 */  
        union {  
            atomic_t _mapcount; /* 所有指向该帧的页表数量*/  
              
        };  
        union {  
            struct {  
            unsigned long private;      /*根据此页的使用情况会有不同的意义,详见源码注释*/  
              
            };  
      
        };  
          
    union {  
            pgoff_t index;      /* 重要:类型即unsinged long, 指向物理帧号 */  
      
        };  
      
      
        struct list_head lru;       /* 指向最近被使用的页的双向链表,cache相关*/  
    };
    下面我们再来看看PGD页表。每个进程的mm_struct->pgd(位于:linux-2.6.32.59\include\linux\Mm_types.h)指向自己的PGD:
    struct mm_struct {  
              
        pgd_t * pgd;  
               
    }
    可以看出pdg实际上是一个pgd_t结构数组,pgd_t在X86系统中就是一个usinged long,其指向的就是下一级页表的地址。就这样找下去,直到找到对应的页为止,再加上页内偏移,就可以进行内存访问了。

    例如线性地址为:0x91220B01,如下图,如果PGD、PUD、PMD以及PTE均5位。页内偏移12位,即页大小4KB。
    那么这段内存的解析步骤是:
    1. PGD号为24,查PGD[24]得到PUD入口;
    2. PUD号为4,再查PUD[4];
    3. PMD号为36,再查PMD[36];
    4. PTE号为2,再查PTE[2];
    5. 如果最终帧地址为a:那么最后的物理地址就是a+0×0301
    需要补充的是,并不是所有的内存都是使用“分页”,在内核初始化的时候,有100MB内存的样子是使用直接映射的,这是因为总是要先装入分页的初始化代码才能进行页表初始化。

    总结:不知不觉也写了不少了。这次我们介绍了操作系统最基本的内存管理概念“分段”与“分页”在Linux中的实现,可以看出其与通过的概念还是很接近的。这正证明了基础知识的重要性。下一次我们将介绍Linux的内存初始化过程,如页表的建立与初始化。


    展开全文
  • Linux内存管理(最透彻的一篇)

    万次阅读 多人点赞 2018-07-27 17:46:02
    在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理。 前言 内存管理一向是所有操作系统书籍不惜笔墨重点讨论的内容,无论市...

    摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法。力求从外到内、水到渠成地引导网友分析Linux的内存管理与使用。在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理。

    前言

    内存管理一向是所有操作系统书籍不惜笔墨重点讨论的内容,无论市面上或是网上都充斥着大量涉及内存管理的教材和资料。因此,我们这里所要写的Linux内存管理采取避重就轻的策略,从理论层面就不去班门弄斧,贻笑大方了。我们最想做的和可能做到的是从开发者的角度谈谈对内存管理的理解,最终目的是把我们在内核开发中使用内存的经验和对Linux内存管理的认识与大家共享。

    当然,这其中我们也会涉及到一些诸如段页等内存管理的基本理论,但我们的目的不是为了强调理论,而是为了指导理解开发中的实践,所以仅仅点到为止,不做深究。

    遵循“理论来源于实践”的“教条”,我们先不必一下子就钻入内核里去看系统内存到底是如何管理,那样往往会让你陷入似懂非懂的窘境(我当年就犯了这个错误!)。所以最好的方式是先从外部(用户编程范畴)来观察进程如何使用内存,等到大家对内存的使用有了较直观的认识后,再深入到内核中去学习内存如何被管理等理论知识。最后再通过一个实例编程将所讲内容融会贯通。

    进程与内存

    进程如何使用内存?

    毫无疑问,所有进程(执行的程序)都必须占用一定数量的内存,它或是用来存放从磁盘载入的程序代码,或是存放取自用户输入的数据等等。不过进程对这些内存的管理方式因内存用途不一而不尽相同,有些内存是事先静态分配和统一回收的,而有些却是按需要动态分配和回收的。

    对任何一个普通进程来讲,它都会涉及到5种不同的数据段。稍有编程知识的朋友都能想到这几个数据段中包含有“程序代码段”、“程序数据段”、“程序堆栈段”等。不错,这几种数据段都在其中,但除了以上几种数据段之外,进程还另外包含两种数据段。下面我们来简单归纳一下进程对应的内存空间中所包含的5种不同的数据区。

    代码段:代码段是用来存放可执行文件的操作指令,也就是说是它是可执行程序在内存中的镜像。代码段需要防止在运行时被非法修改,所以只准许读取操作,而不允许写入(修改)操作——它是不可写的。

    数据段:数据段用来存放可执行文件中已初始化全局变量,换句话说就是存放程序静态分配[1]的变量和全局变量。

    BSS段[2]:BSS段包含了程序中未初始化的全局变量,在内存中 bss段全部置零。

    堆(heap):堆是用于存放进程运行中被动态分配的内存段,它的大小并不固定,可动态扩张或缩减。当进程调用malloc等函数分配内存时,新分配的内存就被动态添加到堆上(堆被扩张);当利用free等函数释放内存时,被释放的内存从堆中被剔除(堆被缩减)

    :栈是用户存放程序临时创建的局部变量,也就是说我们函数括弧“{}”中定义的变量(但不包括static声明的变量,static意味着在数据段中存放变量)。除此以外,在函数被调用时,其参数也会被压入发起调用的进程栈中,并且待到调用结束后,函数的返回值也会被存放回栈中。由于栈的先进先出特点,所以栈特别方便用来保存/恢复调用现场。从这个意义上讲,我们可以把堆栈看成一个寄存、交换临时数据的内存区。

    进程如何组织这些区域?

    上述几种内存区域中数据段、BSS和堆通常是被连续存储的——内存位置上是连续的,而代码段和栈往往会被独立存放。有趣的是,堆和栈两个区域关系很“暧昧”,他们一个向下“长”(i386体系结构中栈向下、堆向上),一个向上“长”,相对而生。但你不必担心他们会碰头,因为他们之间间隔很大(到底大到多少,你可以从下面的例子程序计算一下),绝少有机会能碰到一起。

    下图简要描述了进程内存区域的分布:

    “事实胜于雄辩”,我们用一个小例子(原形取自《User-Level Memory Management》)来展示上面所讲的各种内存区的差别与位置。

    #include<stdio.h>

    #include<malloc.h>

    #include<unistd.h>

    int bss_var;

    int data_var0=1;

    int main(int argc,char **argv)

    {

      printf("below are addresses of types of process's mem\n");

      printf("Text location:\n");

      printf("\tAddress of main(Code Segment):%p\n",main);

      printf("____________________________\n");

      int stack_var0=2;

      printf("Stack Location:\n");

      printf("\tInitial end of stack:%p\n",&stack_var0);

      int stack_var1=3;

      printf("\tnew end of stack:%p\n",&stack_var1);

      printf("____________________________\n");

      printf("Data Location:\n");

      printf("\tAddress of data_var(Data Segment):%p\n",&data_var0);

      static int data_var1=4;

      printf("\tNew end of data_var(Data Segment):%p\n",&data_var1);

      printf("____________________________\n");

      printf("BSS Location:\n");

      printf("\tAddress of bss_var:%p\n",&bss_var);

      printf("____________________________\n");

      char *b = sbrk((ptrdiff_t)0);

      printf("Heap Location:\n");

      printf("\tInitial end of heap:%p\n",b);

      brk(b+4);

      b=sbrk((ptrdiff_t)0);

      printf("\tNew end of heap:%p\n",b);

    return 0;

     }

    它的结果如下

    below are addresses of types of process's mem

    Text location:

       Address of main(Code Segment):0x8048388

    ____________________________

    Stack Location:

       Initial end of stack:0xbffffab4

       new end of stack:0xbffffab0

    ____________________________

    Data Location:

       Address of data_var(Data Segment):0x8049758

       New end of data_var(Data Segment):0x804975c

    ____________________________

    BSS Location:

       Address of bss_var:0x8049864

    ____________________________

    Heap Location:

       Initial end of heap:0x8049868

       New end of heap:0x804986c

    利用size命令也可以看到程序的各段大小,比如执行size example会得到

    text data bss dec hex filename

    1654 280   8 1942 796 example

    但这些数据是程序编译的静态统计,而上面显示的是进程运行时的动态值,但两者是对应的。

     

    通过前面的例子,我们对进程使用的逻辑内存分布已先睹为快。这部分我们就继续进入操作系统内核看看,进程对内存具体是如何进行分配和管理的。

    从用户向内核看,所使用的内存表象形式会依次经历“逻辑地址”——“线性地址”——“物理地址”几种形式(关于几种地址的解释在前面已经讲述了)。逻辑地址经段机制转化成线性地址;线性地址又经过页机制转化为物理地址。(但是我们要知道Linux系统虽然保留了段机制,但是将所有程序的段地址都定死为0-4G,所以虽然逻辑地址和线性地址是两种不同的地址空间,但在Linux中逻辑地址就等于线性地址,它们的值是一样的)。沿着这条线索,我们所研究的主要问题也就集中在下面几个问题。

    1.     进程空间地址如何管理?

    2.     进程地址如何映射到物理内存?

    3.     物理内存如何被管理?

    以及由上述问题引发的一些子问题。如系统虚拟地址分布;内存分配接口;连续内存分配与非连续内存分配等。

     

    进程内存空间

    Linux操作系统采用虚拟内存管理技术,使得每个进程都有各自互不干涉的进程地址空间。该空间是块大小为4G的线性虚拟空间,用户所看到和接触到的都是该虚拟地址,无法看到实际的物理内存地址。利用这种虚拟地址不但能起到保护操作系统的效果(用户不能直接访问物理内存),而且更重要的是,用户程序可使用比实际物理内存更大的地址空间(具体的原因请看硬件基础部分)。

    在讨论进程空间细节前,这里先要澄清下面几个问题:

    l         第一、4G的进程地址空间被人为的分为两个部分——用户空间与内核空间。用户空间从0到3G(0xC0000000),内核空间占据3G到4G。用户进程通常情况下只能访问用户空间的虚拟地址,不能访问内核空间虚拟地址。只有用户进程进行系统调用(代表用户进程在内核态执行)等时刻可以访问到内核空间。

    l         第二、用户空间对应进程,所以每当进程切换,用户空间就会跟着变化;而内核空间是由内核负责映射,它并不会跟着进程改变,是固定的。内核空间地址有自己对应的页表(init_mm.pgd),用户进程各自有不同的页表。

    l         第三、每个进程的用户空间都是完全独立、互不相干的。不信的话,你可以把上面的程序同时运行10次(当然为了同时运行,让它们在返回前一同睡眠100秒吧),你会看到10个进程占用的线性地址一模一样。

     

    进程内存管理

    进程内存管理的对象是进程线性地址空间上的内存镜像,这些内存镜像其实就是进程使用的虚拟内存区域(memory region)。进程虚拟空间是个32或64位的“平坦”(独立的连续区间)地址空间(空间的具体大小取决于体系结构)。要统一管理这么大的平坦空间可绝非易事,为了方便管理,虚拟空间被划分为许多大小可变的(但必须是4096的倍数)内存区域,这些区域在进程线性地址中像停车位一样有序排列。这些区域的划分原则是“将访问属性一致的地址空间存放在一起”,所谓访问属性在这里无非指的是“可读、可写、可执行等”。

    如果你要查看某个进程占用的内存区域,可以使用命令cat /proc/<pid>/maps获得(pid是进程号,你可以运行上面我们给出的例子——./example &;pid便会打印到屏幕),你可以发现很多类似于下面的数字信息。

    由于程序example使用了动态库,所以除了example本身使用的的内存区域外,还会包含那些动态库使用的内存区域(区域顺序是:代码段、数据段、bss段)。

    我们下面只抽出和example有关的信息,除了前两行代表的代码段和数据段外,最后一行是进程使用的栈空间。

    -------------------------------------------------------------------------------

    08048000 - 08049000 r-xp 00000000 03:03 439029                               /home/mm/src/example

    08049000 - 0804a000 rw-p 00000000 03:03 439029                               /home/mm/src/example

    ……………

    bfffe000 - c0000000 rwxp ffff000 00:00 0

    ----------------------------------------------------------------------------------------------------------------------

    每行数据格式如下:

    (内存区域)开始-结束 访问权限  偏移  主设备号:次设备号 i节点  文件。

    注意,你一定会发现进程空间只包含三个内存区域,似乎没有上面所提到的堆、bss等,其实并非如此,程序内存段和进程地址空间中的内存区域是种模糊对应,也就是说,堆、bss、数据段(初始化过的)都在进程空间中由数据段内存区域表示。

     

    在Linux内核中对应进程内存区域的数据结构是: vm_area_struct, 内核将每个内存区域作为一个单独的内存对象管理,相应的操作也都一致。采用面向对象方法使VMA结构体可以代表多种类型的内存区域--比如内存映射文件或进程的用户空间栈等,对这些区域的操作也都不尽相同。

    vm_area_strcut结构比较复杂,关于它的详细结构请参阅相关资料。我们这里只对它的组织方法做一点补充说明。vm_area_struct是描述进程地址空间的基本管理单元,对于一个进程来说往往需要多个内存区域来描述它的虚拟空间,如何关联这些不同的内存区域呢?大家可能都会想到使用链表,的确vm_area_struct结构确实是以链表形式链接,不过为了方便查找,内核又以红黑树(以前的内核使用平衡树)的形式组织内存区域,以便降低搜索耗时。并存的两种组织形式,并非冗余:链表用于需要遍历全部节点的时候用,而红黑树适用于在地址空间中定位特定内存区域的时候。内核为了内存区域上的各种不同操作都能获得高性能,所以同时使用了这两种数据结构。

    下图反映了进程地址空间的管理模型:

    进程的地址空间对应的描述结构是“内存描述符结构”,它表示进程的全部地址空间,——包含了和进程地址空间有关的全部信息,其中当然包含进程的内存区域。

    进程内存的分配与回收

    创建进程fork()、程序载入execve()、映射文件mmap()、动态内存分配malloc()/brk()等进程相关操作都需要分配内存给进程。不过这时进程申请和获得的还不是实际内存,而是虚拟内存,准确的说是“内存区域”。进程对内存区域的分配最终都会归结到do_mmap()函数上来(brk调用被单独以系统调用实现,不用do_mmap()),

    内核使用do_mmap()函数创建一个新的线性地址区间。但是说该函数创建了一个新VMA并不非常准确,因为如果创建的地址区间和一个已经存在的地址区间相邻,并且它们具有相同的访问权限的话,那么两个区间将合并为一个。如果不能合并,那么就确实需要创建一个新的VMA了。但无论哪种情况, do_mmap()函数都会将一个地址区间加入到进程的地址空间中--无论是扩展已存在的内存区域还是创建一个新的区域。

    同样,释放一个内存区域应使用函数do_ummap(),它会销毁对应的内存区域。

    如何由虚变实!

        从上面已经看到进程所能直接操作的地址都为虚拟地址。当进程需要内存时,从内核获得的仅仅是虚拟的内存区域,而不是实际的物理地址,进程并没有获得物理内存(物理页面——页的概念请大家参考硬件基础一章),获得的仅仅是对一个新的线性地址区间的使用权。实际的物理内存只有当进程真的去访问新获取的虚拟地址时,才会由“请求页机制”产生“缺页”异常,从而进入分配实际页面的例程。

    该异常是虚拟内存机制赖以存在的基本保证——它会告诉内核去真正为进程分配物理页,并建立对应的页表,这之后虚拟地址才实实在在地映射到了系统的物理内存上。(当然,如果页被换出到磁盘,也会产生缺页异常,不过这时不用再建立页表了)

    这种请求页机制把页面的分配推迟到不能再推迟为止,并不急于把所有的事情都一次做完(这种思想有点像设计模式中的代理模式(proxy))。之所以能这么做是利用了内存访问的“局部性原理”,请求页带来的好处是节约了空闲内存,提高了系统的吞吐率。要想更清楚地了解请求页机制,可以看看《深入理解linux内核》一书。

    这里我们需要说明在内存区域结构上的nopage操作。当访问的进程虚拟内存并未真正分配页面时,该操作便被调用来分配实际的物理页,并为该页建立页表项。在最后的例子中我们会演示如何使用该方法。

     

     

    系统物理内存管理 

    虽然应用程序操作的对象是映射到物理内存之上的虚拟内存,但是处理器直接操作的却是物理内存。所以当应用程序访问一个虚拟地址时,首先必须将虚拟地址转化成物理地址,然后处理器才能解析地址访问请求。地址的转换工作需要通过查询页表才能完成,概括地讲,地址转换需要将虚拟地址分段,使每段虚地址都作为一个索引指向页表,而页表项则指向下一级别的页表或者指向最终的物理页面。

    每个进程都有自己的页表。进程描述符的pgd域指向的就是进程的页全局目录。下面我们借用《linux设备驱动程序》中的一幅图大致看看进程地址空间到物理页之间的转换关系。

     

     

         上面的过程说起来简单,做起来难呀。因为在虚拟地址映射到页之前必须先分配物理页——也就是说必须先从内核中获取空闲页,并建立页表。下面我们介绍一下内核管理物理内存的机制。

     

    物理内存管理(页管理)

    Linux内核管理物理内存是通过分页机制实现的,它将整个内存划分成无数个4k(在i386体系结构中)大小的页,从而分配和回收内存的基本单位便是内存页了。利用分页管理有助于灵活分配内存地址,因为分配时不必要求必须有大块的连续内存[3],系统可以东一页、西一页的凑出所需要的内存供进程使用。虽然如此,但是实际上系统使用内存时还是倾向于分配连续的内存块,因为分配连续内存时,页表不需要更改,因此能降低TLB的刷新率(频繁刷新会在很大程度上降低访问速度)。

    鉴于上述需求,内核分配物理页面时为了尽量减少不连续情况,采用了“伙伴”关系来管理空闲页面。伙伴关系分配算法大家应该不陌生——几乎所有操作系统方面的书都会提到,我们不去详细说它了,如果不明白可以参看有关资料。这里只需要大家明白Linux中空闲页面的组织和管理利用了伙伴关系,因此空闲页面分配时也需要遵循伙伴关系,最小单位只能是2的幂倍页面大小。内核中分配空闲页面的基本函数是get_free_page/get_free_pages,它们或是分配单页或是分配指定的页面(2、4、8…512页)。

     注意:get_free_page是在内核中分配内存,不同于malloc在用户空间中分配,malloc利用堆动态分配,实际上是调用brk()系统调用,该调用的作用是扩大或缩小进程堆空间(它会修改进程的brk域)。如果现有的内存区域不够容纳堆空间,则会以页面大小的倍数为单位,扩张或收缩对应的内存区域,但brk值并非以页面大小为倍数修改,而是按实际请求修改。因此Malloc在用户空间分配内存可以以字节为单位分配,但内核在内部仍然会是以页为单位分配的。

       另外,需要提及的是,物理页在系统中由页结构struct page描述,系统中所有的页面都存储在数组mem_map[]中,可以通过该数组找到系统中的每一页(空闲或非空闲)。而其中的空闲页面则可由上述提到的以伙伴关系组织的空闲页链表(free_area[MAX_ORDER])来索引。

     

    文本框: 伙伴关系维护

    内核内存使用

    Slab

        所谓尺有所长,寸有所短。以页为最小单位分配内存对于内核管理系统中的物理内存来说的确比较方便,但内核自身最常使用的内存却往往是很小(远远小于一页)的内存块——比如存放文件描述符、进程描述符、虚拟内存区域描述符等行为所需的内存都不足一页。这些用来存放描述符的内存相比页面而言,就好比是面包屑与面包。一个整页中可以聚集多个这些小块内存;而且这些小块内存块也和面包屑一样频繁地生成/销毁。

      为了满足内核对这种小内存块的需要,Linux系统采用了一种被称为slab分配器的技术。Slab分配器的实现相当复杂,但原理不难,其核心思想就是“存储池[4]”的运用。内存片段(小块内存)被看作对象,当被使用完后,并不直接释放而是被缓存到“存储池”里,留做下次使用,这无疑避免了频繁创建与销毁对象所带来的额外负载。

    Slab技术不但避免了内存内部分片(下文将解释)带来的不便(引入Slab分配器的主要目的是为了减少对伙伴系统分配算法的调用次数——频繁分配和回收必然会导致内存碎片——难以找到大块连续的可用内存),而且可以很好地利用硬件缓存提高访问速度。

        Slab并非是脱离伙伴关系而独立存在的一种内存分配方式,slab仍然是建立在页面基础之上,换句话说,Slab将页面(来自于伙伴关系管理的空闲页面链表)撕碎成众多小内存块以供分配,slab中的对象分配和销毁使用kmem_cache_alloc与kmem_cache_free。

     

    Kmalloc

    Slab分配器不仅仅只用来存放内核专用的结构体,它还被用来处理内核对小块内存的请求。当然鉴于Slab分配器的特点,一般来说内核程序中对小于一页的小块内存的请求才通过Slab分配器提供的接口Kmalloc来完成(虽然它可分配32 到131072字节的内存)。从内核内存分配的角度来讲,kmalloc可被看成是get_free_page(s)的一个有效补充,内存分配粒度更灵活了。

    有兴趣的话,可以到/proc/slabinfo中找到内核执行现场使用的各种slab信息统计,其中你会看到系统中所有slab的使用信息。从信息中可以看到系统中除了专用结构体使用的slab外,还存在大量为Kmalloc而准备的Slab(其中有些为dma准备的)。

     

    内核非连续内存分配(Vmalloc)

     

    伙伴关系也好、slab技术也好,从内存管理理论角度而言目的基本是一致的,它们都是为了防止“分片”,不过分片又分为外部分片和内部分片之说,所谓内部分片是说系统为了满足一小段内存区(连续)的需要,不得不分配了一大区域连续内存给它,从而造成了空间浪费;外部分片是指系统虽有足够的内存,但却是分散的碎片,无法满足对大块“连续内存”的需求。无论何种分片都是系统有效利用内存的障碍。slab分配器使得一个页面内包含的众多小块内存可独立被分配使用,避免了内部分片,节约了空闲内存。伙伴关系把内存块按大小分组管理,一定程度上减轻了外部分片的危害,因为页框分配不在盲目,而是按照大小依次有序进行,不过伙伴关系只是减轻了外部分片,但并未彻底消除。你自己比划一下多次分配页面后,空闲内存的剩余情况吧。

    所以避免外部分片的最终思路还是落到了如何利用不连续的内存块组合成“看起来很大的内存块”——这里的情况很类似于用户空间分配虚拟内存,内存逻辑上连续,其实映射到并不一定连续的物理内存上。Linux内核借用了这个技术,允许内核程序在内核地址空间中分配虚拟地址,同样也利用页表(内核页表)将虚拟地址映射到分散的内存页上。以此完美地解决了内核内存使用中的外部分片问题。内核提供vmalloc函数分配内核虚拟内存,该函数不同于kmalloc,它可以分配较Kmalloc大得多的内存空间(可远大于128K,但必须是页大小的倍数),但相比Kmalloc来说,Vmalloc需要对内核虚拟地址进行重映射,必须更新内核页表,因此分配效率上要低一些(用空间换时间)

    与用户进程相似,内核也有一个名为init_mm的mm_strcut结构来描述内核地址空间,其中页表项pdg=swapper_pg_dir包含了系统内核空间(3G-4G)的映射关系。因此vmalloc分配内核虚拟地址必须更新内核页表,而kmalloc或get_free_page由于分配的连续内存,所以不需要更新内核页表。

     

    文本框: 伙伴关系维护文本框: vmalloc文本框: Kmalloc

     

    vmalloc分配的内核虚拟内存与kmalloc/get_free_page分配的内核虚拟内存位于不同的区间,不会重叠。因为内核虚拟空间被分区管理,各司其职。进程空间地址分布从0到3G(其实是到PAGE_OFFSET,在0x86中它等于0xC0000000),从3G到vmalloc_start这段地址是物理内存映射区域(该区域中包含了内核镜像、物理页面表mem_map等等)比如我使用的系统内存是64M(可以用free看到),那么(3G——3G+64M)这片内存就应该映射到物理内存,而vmalloc_start位置应在3G+64M附近(说"附近"因为是在物理内存映射区与vmalloc_start期间还会存在一个8M大小的gap来防止跃界),vmalloc_end的位置接近4G(说"接近"是因为最后位置系统会保留一片128k大小的区域用于专用页面映射,还有可能会有高端内存映射区,这些都是细节,这里我们不做纠缠)。

     

     

     

    上图是内存分布的模糊轮廓

     

       由get_free_page或Kmalloc函数所分配的连续内存都陷于物理映射区域,所以它们返回的内核虚拟地址和实际物理地址仅仅是相差一个偏移量(PAGE_OFFSET),你可以很方便的将其转化为物理内存地址,同时内核也提供了virt_to_phys()函数将内核虚拟空间中的物理映射区地址转化为物理地址。要知道,物理内存映射区中的地址与内核页表是有序对应的,系统中的每个物理页面都可以找到它对应的内核虚拟地址(在物理内存映射区中的)。

    而vmalloc分配的地址则限于vmalloc_start与vmalloc_end之间。每一块vmalloc分配的内核虚拟内存都对应一个vm_struct结构体(可别和vm_area_struct搞混,那可是进程虚拟内存区域的结构),不同的内核虚拟地址被4k大小的空闲区间隔,以防止越界——见下图)。与进程虚拟地址的特性一样,这些虚拟地址与物理内存没有简单的位移关系,必须通过内核页表才可转换为物理地址或物理页。它们有可能尚未被映射,在发生缺页时才真正分配物理页面。

     

    这里给出一个小程序帮助大家认清上面几种分配函数所对应的区域。

    #include<linux/module.h>

    #include<linux/slab.h>

    #include<linux/vmalloc.h>

    unsigned char *pagemem;

    unsigned char *kmallocmem;

    unsigned char *vmallocmem;

    int init_module(void)

    {

     pagemem = get_free_page(0);

     printk("<1>pagemem=%s",pagemem);

     kmallocmem = kmalloc(100,0);

     printk("<1>kmallocmem=%s",kmallocmem);

     vmallocmem = vmalloc(1000000);

     printk("<1>vmallocmem=%s",vmallocmem);

    }

    void cleanup_module(void)

    {

     free_page(pagemem);

     kfree(kmallocmem);

     vfree(vmallocmem);

    }

     

    实例

    内存映射(mmap)是Linux操作系统的一个很大特色,它可以将系统内存映射到一个文件(设备)上,以便可以通过访问文件内容来达到访问内存的目的。这样做的最大好处是提高了内存访问速度,并且可以利用文件系统的接口编程(设备在Linux中作为特殊文件处理)访问内存,降低了开发难度。许多设备驱动程序便是利用内存映射功能将用户空间的一段地址关联到设备内存上,无论何时,只要内存在分配的地址范围内进行读写,实际上就是对设备内存的访问。同时对设备文件的访问也等同于对内存区域的访问,也就是说,通过文件操作接口可以访问内存。Linux中的X服务器就是一个利用内存映射达到直接高速访问视频卡内存的例子。

    熟悉文件操作的朋友一定会知道file_operations结构中有mmap方法,在用户执行mmap系统调用时,便会调用该方法来通过文件访问内存——不过在调用文件系统mmap方法前,内核还需要处理分配内存区域(vma_struct)、建立页表等工作。对于具体映射细节不作介绍了,需要强调的是,建立页表可以采用remap_page_range方法一次建立起所有映射区的页表,或利用vma_struct的nopage方法在缺页时现场一页一页的建立页表。第一种方法相比第二种方法简单方便、速度快, 但是灵活性不高。一次调用所有页表便定型了,不适用于那些需要现场建立页表的场合——比如映射区需要扩展或下面我们例子中的情况。

     

    我们这里的实例希望利用内存映射,将系统内核中的一部分虚拟内存映射到用户空间,以供应用程序读取——你可利用它进行内核空间到用户空间的大规模信息传输。因此我们将试图写一个虚拟字符设备驱动程序,通过它将系统内核空间映射到用户空间——将内核虚拟内存映射到用户虚拟地址。从上一节已经看到Linux内核空间中包含两种虚拟地址:一种是物理和逻辑都连续的物理内存映射虚拟地址;另一种是逻辑连续但非物理连续的vmalloc分配的内存虚拟地址。我们的例子程序将演示把vmalloc分配的内核虚拟地址映射到用户地址空间的全过程。

    程序里主要应解决两个问题:

    第一是如何将vmalloc分配的内核虚拟内存正确地转化成物理地址?

    因为内存映射先要获得被映射的物理地址,然后才能将其映射到要求的用户虚拟地址上。我们已经看到内核物理内存映射区域中的地址可以被内核函数virt_to_phys转换成实际的物理内存地址,但对于vmalloc分配的内核虚拟地址无法直接转化成物理地址,所以我们必须对这部分虚拟内存格外“照顾”——先将其转化成内核物理内存映射区域中的地址,然后在用virt_to_phys变为物理地址。

    转化工作需要进行如下步骤:

    a)         找到vmalloc虚拟内存对应的页表,并寻找到对应的页表项。

    b)        获取页表项对应的页面指针

    c)        通过页面得到对应的内核物理内存映射区域地址

    如下图所示:

    第二是当访问vmalloc分配区时,如果发现虚拟内存尚未被映射到物理页,则需要处理“缺页异常”。因此需要我们实现内存区域中的nopaga操作,以能返回被映射的物理页面指针,在我们的实例中就是返回上面过程中的内核物理内存映射区域中的地址由于vmalloc分配的虚拟地址与物理地址的对应关系并非分配时就可确定,必须在缺页现场建立页表,因此这里不能使用remap_page_range方法,只能用vma的nopage方法一页一页的建立。

     

     

    程序组成

    map_driver.c,它是以模块形式加载的虚拟字符驱动程序。该驱动负责将一定长的内核虚拟地址(vmalloc分配的)映射到设备文件上。其中主要的函数有——vaddress_to_kaddress()负责对vmalloc分配的地址进行页表解析,以找到对应的内核物理映射地址(kmalloc分配的地址);map_nopage()负责在进程访问一个当前并不存在的VMA页时,寻找该地址对应的物理页,并返回该页的指针。

    test.c 它利用上述驱动模块对应的设备文件在用户空间读取读取内核内存。结果可以看到内核虚拟地址的内容(ok!),被显示在了屏幕上。

     

    执行步骤

    编译map_driver.c为map_driver.o模块,具体参数见Makefile

    加载模块 :insmod map_driver.o

    生成对应的设备文件

    1 在/proc/devices下找到map_driver对应的设备命和设备号:grep mapdrv /proc/devices

    2 建立设备文件mknod  mapfile c 254 0  (在我的系统里设备号为254)

        利用maptest读取mapfile文件,将取自内核的信息打印到屏幕上。

     

    转自https://blog.csdn.net/hustyangju/article/details/46330259

    展开全文
  • linux内存管理机制以及free命令详解

    千次阅读 2017-11-24 12:06:43
    linux内存管理机制以及free命令详解 一、linux内存管理机制  1.物理内存和虚拟内存  直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样...
  • Linux内存管理机制(最透彻的一篇)

    万次阅读 多人点赞 2018-08-05 14:10:09
    在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理。 前言 内存管理一向是所有操作系统书籍不惜笔墨重点讨论的内容,无论市...
  • 深入理解Linux内存管理-之-目录导航

    万次阅读 多人点赞 2016-09-29 21:51:17
    日期 内核版本 架构 作者 GitHub CSDN 2016-08-31 Linux-4.7 X86 & arm gatieme LinuxDeviceDrivers ... GitHub Linux内存描述之概述–Linux内存管理(一) 01-description/01-memory Linux内
  • linux内核分析--浅析内存管理机制

    千次阅读 2014-04-18 19:01:04
    linux内存管理---虚拟地址、逻辑地址、线性地址、物理地址的区别(一) linux内存管理---物理地址、线性地址、虚拟地址。逻辑地址之间的转换(二) linux内存管理--linux内核高端内存 linux内存管理--Linux中的...
  • 如何正确计算LINUX内存使用率

    万次阅读 2012-07-10 14:20:00
    图中的例子不是很典型,典型的情况是:多数的linux...具体的机制我们无需知道,我们需要知道的是,linux内存管理机制的思想包括(不敢说就是)内存利用率最大化。内核会把剩余的内存申请为cached,而cached不属于fre
  • linux如何查看进程OOM killer

    万次阅读 2016-09-18 09:45:10
    Linux 内核有个机制叫OOM killer(Out-Of-Memory killer),该机制会监控那些占用内存过大,尤其是瞬间很快消耗大量内存的进程,为了防止内存耗尽而内核会把该进程杀掉。 如何查看: grep "Out of memory" /var/...
  • linux服务器运行一段时间,free内存就快没有了,原来是Linux内核机制,不是内存泄露
  • 正确计算linux系统内存使用率

    千次阅读 2018-08-12 09:03:14
    图中的例子很典型,就是:多数的...具体的机制我们无需知道,我们需要知道的是,linux内存管理机制的思想包括(不敢说就是)内存利用率最大化。内核会把剩余的内存申请为cached,而cached不属于free范畴。当...
  • 按照linux系统的设计哲学,内核只提供dump内存机制,用户想要dump什么样的内存,dump多少内存是属于策略问题,由用户来决定。 在真实的使用场景中,主要有两种使用方式: 一种是dump某一个进程的地址空间来供...
  • Linux 内核有个机制叫OOM killer(Out Of Memory killer),该机制会监控那些占用内存过大,尤其是瞬间占用内存很快的进程,然后防止内存耗尽而自动把该进程杀掉。内核检测到系统内存不足、挑选并杀掉某个进程的过程...
  • linux下程序被Killed

    万次阅读 2016-08-12 15:53:51
    服务器上跑的一个程序,发现报了Killed
  • Linux内存管理

    万次阅读 2015-03-12 17:00:36
    这是Linux内存管理的一个优秀特性,在这方面,区别于Windows的内存管理。主要特点是,无论物理内存有多大,Linux 都将其充份利用,将一些程序调用过的硬盘数据读入内存,利用内存读写的高速特性来提高Linux系统的...
  • Linux实际内存使用计算

    万次阅读 2019-03-25 11:40:59
    其实,这只是Linux的为了提高文件读取的性能的内存使用机制罢了。不同于Windows,windows程序执行完后,会马上释放掉内存,把Memory降下来。而对于Linux,如果你的服务器内存还有足够多的空间的话,...
  • Linux SWAP内存交换机制基本概念

    千次阅读 2017-04-16 11:50:52
    Linux SWAP内存交换机制基本概念tags: Linux源码Linux SWAP内存交换机制基本概念 摘要 前序知识 内存交换要做什么 硬件上给予的支持 下面假定场景更好的叙述 Linux中的实现 数据什么时候跑到磁盘上面去的 什么时候换...
  • linux下如何清理缓存

    万次阅读 2018-10-18 16:30:21
    linux的虚拟内存机制,很多时候回导致内存得不到及时释放,有时候内存很少了,kill了很多进程,但是内存还是没有释放,这时候可以尝试一下手动释放,linux是提供了这样的接口的。 echo 1 &gt; /proc/sys/vm/drop...
  • 深入分析Linux内核源码.chm

    千次下载 热门讨论 2020-07-30 23:30:59
    6.2 Linux内存管理的初始化 6.3 内存的分配和回收 6.4 地址映射机制 6.5 请页机制 6.6 交换机制 6.7 缓存和刷新机制 6.8 进程的创建和执行 第七章 进程间通信 7.1 管道 7.2 信号(signal) 7.3 System V 的IPC机制 第...
1 2 3 4 5 ... 20
收藏数 254,091
精华内容 101,636
关键字:

linux内存机制