图像处理圆度计算公式_图像相似度计算公式 - CSDN
  • MatLab计算图像圆度

    万次阅读 2013-10-08 10:04:00
    本文所述方法可以检测同一图像中的多个圆形(准确的说,应该是闭合图像)。

    本文所述方法可以检测同一图像中的多个圆形(准确的说,应该是闭合图像)。

    在Matlab2010a中可以实现。

    附录效果图:

     

    %颗粒圆度 clear;close all; %% %读取源图像 I = imread('999.png'); figure;imshow(I); %% %灰度化、取反 h = rgb2gray(I); figure;imshow(h);%灰度图像 h = imcomplement(h);%取反 figure;imshow(h); %% %中值滤波、二值化 h = medfilt2(h,[4,4]); bw = im2bw(h,graythresh(h)); %% %消除噪点 se = strel('disk',2); bw = imclose(bw,se); figure;imshow(bw); %% %填补闭合图形,填充色为白色 bw  = imfill(bw,'holes'); %% %边界寻找 [B,L] = bwboundaries(bw,'noholes'); % 为每个闭合图形设置颜色显示 figure;imshow(label2rgb(L, @jet, [.5 .5 .5])) hold on for k = 1:length(B)   boundary = B{k};   plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2) end %% %计算面积 stats = regionprops(L,'Area','Centroid');

    threshold = 0.94;

    % 循环处理每个边界,length(B)是闭合图形的个数,即检测到的陶粒对象个数 for k = 1:length(B)

      % 获取边界坐标'   boundary = B{k};

      % 计算周长   delta_sq = diff(boundary).^2;   perimeter = sum(sqrt(sum(delta_sq,2)));

      % 对标记为K的对象获取面积   area = stats(k).Area;

      % 圆度计算公式4*PI*A/P^2   metric = 4*pi*area/perimeter^2;

      % 结果显示   metric_string = sprintf('%2.2f',metric);

      % 用一个黑色小圆圈标记圆度大于threshold = 0.94 的对象   if metric > threshold     centroid = stats(k).Centroid;     plot(centroid(1),centroid(2),'ko');   end %设置显示字体   text(boundary(1,2)-35,boundary(1,1)+13,metric_string,'Color','y',...        'FontSize',14,'FontWeight','bold');

    end

    title(['圆度识别结果,越圆越接近1,']);

     


     

    展开全文
  • MATLAB 检测一图像中的多个圆形

    万次阅读 2014-12-10 15:09:54
    本文所述方法可以检测同一图像中的多个...%颗粒圆度 clear;close all; %% %读取源图像 I = imread('999.png'); figure;imshow(I); %% %灰度化、取反 h = rgb2gray(I); figure;imshow(h);%灰度图像 h = imco

    本文所述方法可以检测同一图像中的多个圆形(准确的说,应该是闭合图像)。

    在Matlab2010a中可以实现。

    <p>%颗粒圆度
    clear;close all;
    %%
    %读取源图像
    I = imread('999.png');
    figure;imshow(I);
    %%
    %灰度化、取反
    h = rgb2gray(I);
    figure;imshow(h);%灰度图像
    h = imcomplement(h);%取反
    figure;imshow(h);
    %%
    %中值滤波、二值化
    h = medfilt2(h,[4,4]);
    bw = im2bw(h,graythresh(h));
    %%
    %消除噪点
    se = strel('disk',2);
    bw = imclose(bw,se);
    figure;imshow(bw);
    %%
    %填补闭合图形,填充色为白色
    bw&nbsp; = imfill(bw,'holes');
    %%
    %边界寻找
    [B,L] = bwboundaries(bw,'noholes');
    % 为每个闭合图形设置颜色显示
    figure;imshow(label2rgb(L, @jet, [.5 .5 .5]))
    hold on
    for k = 1:length(B)
    &nbsp; boundary = B{k};
    &nbsp; plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2)
    end
    %%
    %计算面积
    stats = regionprops(L,'Area','Centroid');</p><p>threshold = 0.94;</p><p>% 循环处理每个边界,length(B)是闭合图形的个数,即检测到的陶粒对象个数
    for k = 1:length(B)</p><p>&nbsp; % 获取边界坐标'
    &nbsp; boundary = B{k};</p><p>&nbsp; % 计算周长
    &nbsp; delta_sq = diff(boundary).^2;
    &nbsp; perimeter = sum(sqrt(sum(delta_sq,2)));</p><p>&nbsp; % 对标记为K的对象获取面积
    &nbsp; area = stats(k).Area;</p><p>&nbsp; % 圆度计算公式4*PI*A/P^2
    &nbsp; metric = 4*pi*area/perimeter^2;</p><p>&nbsp; % 结果显示
    &nbsp; metric_string = sprintf('%2.2f',metric);</p><p>&nbsp; % 用一个黑色小圆圈标记圆度大于threshold = 0.94 的对象
    &nbsp; if metric > threshold
    &nbsp;&nbsp;&nbsp; centroid = stats(k).Centroid;
    &nbsp;&nbsp;&nbsp; plot(centroid(1),centroid(2),'ko');
    &nbsp; end
    %设置显示字体
    &nbsp; text(boundary(1,2)-35,boundary(1,1)+13,metric_string,'Color','y',...
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 'FontSize',14,'FontWeight','bold');</p><p>end</p><p>title(['圆度识别结果,越圆越接近1,']);</p><p>&nbsp;</p>

    展开全文
  • 图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的...

    图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。

    概述

    编辑
    21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。数字图像处理,即用计算机对图像进行处理,其发展历史并不长。数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。首先数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。
    在计算机中,按照颜色和灰度的多少可以将图像分为二值图像灰度图像索引图像和真彩色RGB图像四种基本类型。大多数图像处理软件都支持这四种类型的图像。
    中国物联网校企联盟认为图像处理将会是物联网产业发展的重要支柱之一,它的具体应用是指纹识别技术[1]  。

    常用方法

    编辑
    1 )图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
    2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
    3 )图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
    4 )图像分割:图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
    5 )图像描述:图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
    6 )图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

    图像

    编辑

    二值图像

    一幅二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。

    灰度图像

    灰度图像矩阵元素的取值范围通常为[0,255]。因此其数据类型一般为8位无符号整数的(int8),这就是人们经常提到的256灰度图像。“0”表示纯黑色,“255”表示纯白色,中间的数字从小到大表示由黑到白的过渡色。在某些软件中,灰度图像也可以用双精度数据类型(double)表示,像素的值域为[0,1],0代表黑色,1代表白色,0到1之间的小数表示不同的灰度等级。二值图像可以看成是灰度图像的一个特例。

    索引图像

    索引图像的文件结构比较复杂,除了存放图像的二维矩阵外,还包括一个称之为颜色索引矩阵MAP的二维数组。MAP的大小由存放图像的矩阵元素值域决定,如矩阵元素值域为[0,255],则MAP矩阵的大小为256Ⅹ3,用MAP=[RGB]表示。MAP中每一行的三个元素分别指定该行对应颜色的红、绿、蓝单色值,MAP中每一行对应图像矩阵像素的一个灰度值,如某一像素的灰度值为64,则该像素就与MAP中的第64行建立了映射关系,该像素在屏幕上的实际颜色由第64行的[RGB]组合决定。也就是说,图像在屏幕上显示时,每一像素的颜色由存放在矩阵中该像素的灰度值作为索引通过检索颜色索引矩阵MAP得到。索引图像的数据类型一般为8位无符号整形(int8),相应索引矩阵MAP的大小为256Ⅹ3,因此一般索引图像只能同时显示256种颜色,但通过改变索引矩阵,颜色的类型可以调整。索引图像的数据类型也可采用双精度浮点型(double)。索引图像一般用于存放色彩要求比较简单的图像,如Windows中色彩构成比较简单的壁纸多采用索引图像存放,如果图像的色彩比较复杂,就要用到RGB真彩色图像。

    RGB彩色图像

    RGB图像与索引图像一样都可以用来表示彩色图像。与索引图像一样,它分别用红(R)、绿(G)、蓝(B)三原色的组合来表示每个像素的颜色。但与索引图像不同的是,RGB图像每一个像素的颜色值(由RGB三原色表示)直接存放在图像矩阵中,由于每一像素的颜色需由R、G、B三个分量来表示,M、N分别表示图像的行列数,三个M x N的二维矩阵分别表示各个像素的R、G、B三个颜色分量。RGB图像的数据类型一般为8位无符号整形,通常用于表示和存放真彩色图像,当然也可以存放灰度图像。
    数字化图像数据有两种存储方式[6]:位图存储(Bitmap)和矢量存储(Vector)
    我们平常是以图像分辨率(即像素点)和颜色数来描述数字图象的。例如一张分辨率为640*480,16位色的数字图片,就由2^16=65536种颜色的307200(=640*480)个素点组成。
    位图图像:位图方式是将图像的每一个象素点转换为一个数据,当图像是单色(只有黑白二色)时,8个象素点的数据只占据一个字节(一个字节就是8个二进制数,1个二进制数存放象素点);16色(区别于前段“16位色”)的图像每两个象素点用一个字节存储;256色图像每一个象素点用一个字节存储。这样就能够精确地描述各种不同颜色模式的图像图面。位图图像弥补了矢量式图像的缺陷,它能够制作出色彩和色调变化丰富的图像,可以逼真地表现自然界的景象,同时也可以很容易地在不同软件之间交换文件,这就是位图图像的优点;而其缺点则是它无法制作真正的3D图像,并且图像缩放和旋转时会产生失真的现象,同时文件较大,对内存和硬盘空间容量的需求也较高。位图方式就是将图像的每一像素点转换为一个数据。如果用1位数据来记录,那么它只能代表2种颜色(2^1=2);如果以8位来记录,便可以表现出256种颜色或色调(2^8=256),因此使用的位元素越多所能表现的色彩也越多。通常我们使用的颜色有16色、256色、增强16位和真彩色24位。一般所说的真彩色是指24位(2^24)的位图存储模式适合于内容复杂的图像和真实照片。但随着分辨率以及颜色数的提高,图像所占用的磁盘空间也就相当大;另外由于在放大图像的过程中,其图像势必要变得模糊而失真,放大后的图像像素点实际上变成了像素“方格”。 用数码相机和扫描仪获取的图像都属于位图。
    矢量图像:矢量图像存储的是图像信息的轮廓部分,而不是图像的每一个象素点。例如,一个圆形图案只要存储圆心的坐标位置和半径长度,以及圆的边线和内部的颜色即可。该存储方式的缺点是经常耗费大量的时间做一些复杂的分析演算工作,图像的显示速度较慢;但图像缩放不会失真;图像的存储空间也要小得多。所以,矢量图比较适合存储各种图表和工程

    数据

    编辑
    图像处理离不开海量、丰富的基础数据,包括视频、静态图像等多种格式,如Berkeley分割数据集和基准500 (BSDS500)、西门菲沙大学不同光照物体图像数据库、神经网络人脸识别数据、CBCL-MIT StreetScenes(麻省理工学院街景数据库)等。

    数字化

    编辑
    通过取样和量化过程将一个以自然形式存在的图像变换为适合计算机处理的数字形式。图像在计算机内部被表示为一个数字矩阵,矩阵中每一元素称为像素。图像数字化需要专门的设备,常见的有各种电子的和光学的扫描设备,还有机电扫描设备和手工操作的数字化仪。

    图像编码

    编辑
    对图像信息编码,以满足传输和存储的要求。编码能压缩图像的信息量,但图像质量几乎不变。为此,可以采用模拟处理技术,再通过模-数转换得到编码,不过多数是采用数字编码技术。编码方法有对图像逐点进行加工的方法,也有对图像施加某种变换或基于区域、特征进行编码的方法。脉码调制、微分脉码调制、预测码和各种变换都是常用的编码技术。

    图像压缩

    编辑
    由数字化得到的一幅图像的数据量十分巨大,一幅典型的数字图像通常由500×500或1000×1000个像素组成。如果是动态图像,其数据量更大。因此图像压缩对于图像的存储和传输都十分必要。
    图像压缩有两类压缩算法,即无损压缩和有损压缩。最常用的无损压缩算法取空间或时间上相邻像素值的差,再进行编码。游程码就是这类压缩码的例子。有损压缩算法大都采用图像交换的途径,例如对图像进行快速傅里叶变换或离散的余弦变换。已作为图像压缩国际标准的JPEG和MPEG均属于有损压缩算法。前者用于静态图像,后者用于动态图像。它们都由芯片实现[2]  。

    增强复原

    编辑
    图像增强的目标是改进图片的质量,例如增加对比度,去掉模糊和噪声,修正几何畸变等;图像复原是在假定已知模糊或噪声的模型时,试图估计原图像的一种技术。
    图像增强按所用方法可分成频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声[3]  。
    早期的数字图像复原亦来自频率域的概念。现代采取的是一种代数的方法,即通过解一个大的方程组来复原理想的图片。
    以提高图像质量为目的的图像增强和复原对于一些难以得到的图片或者在拍摄条件十分恶劣情况下得到的图片都有广泛的应用。例如从太空中拍摄到的地球或其他星球的照片,用电子显微镜或X光拍摄的生物医疗图片等。
    图像增强 使图像清晰或将其转换为更适合人或机器分析的形式。与图像复原不同,图像增强并不要求忠实地反映原始图像。相反,含有某种失真(例如突出轮廓线)的图像可能比无失真的原始图像更为清晰。常用的图像增强方法有:①灰度等级直方图处理:使加工后的图像在某一灰度范围内有更好的对比度;②干扰抑制:通过低通滤波、多图像平均、施行某类空间域算子等处理,抑制叠加在图像上的随机性干扰;③边缘锐化:通过高通滤波、差分运算或某种变换,使图形的轮廓线增强;④伪彩色处理:将黑白图像转换为彩色图像,从而使人们易于分析和检测图像包含的信息。
    图像复原 除去或减少在获得图像过程中因各种原因产生的退化。这类原因可能是光学系统的像差或离焦、摄像系统与被摄物之间的相对运动、电子或光学系统的噪声和介于摄像系统与被摄像物间的大气湍流等。图像复原常用二种方法。当不知道图像本身的性质时,可以建立退化源的数学模型,然后施行复原算法除去或减少退化源的影响。当有了关于图像本身的先验知识时,可以建立原始图像的模型,然后在观测到的退化图像中通过检测原始图像而复原图像。
    图像分割将图像划分为一些互不重叠的区域,每一区域是像素的一个连续集。通常采用把像素分入特定区域的区域法和寻求区域之间边界的境界法。区域法根据被分割对象与背景的对比度进行阈值运算,将对象从背景中分割出来。有时用固定的阈值不能得到满意的分割,可根据局部的对比度调整阈值,这称为自适应阈值。境界法利用各种边缘检测技术,即根据图像边缘处具有很大的梯度值进行检测。这两种方法都可以利用图像的纹理特性实现图像分割。

    形态学

    编辑
    形态学一词通常指生物学的一个分支,它用于处理动物和植物的形状和结构。在数学形态学的语境中也使用该词来作为提取图像分量的一种工具,这些分量在表示和描述区域形状(如边界,骨骼和凸壳)时是很有用的。此外,我们还很关注用于预处理和后处理的形态学技术,如形态学滤波、细化和裁剪。
    数学形态学的基本运算
    数学形态学的基本运算有4个:腐蚀、膨胀、开启和闭合。数学形态学方法利用一个称作结构元素的”探针”收集图像的信息,当探针在图像中不断移动时,便可考察图像各个部分之间的相互关系,从而了解图像的结构特征。在连续空间中,灰度图像的腐蚀、膨胀、开启和闭合运算分别表述如下。
    腐蚀
    腐蚀“收缩”或“细化”二值图像中的对象。收缩的方式和程度由一个结构元素控制。数学上,A被B腐蚀,记为AΘB,定义为:
    换言
    腐蚀运算腐蚀运算
    之,A被B腐蚀是所有结构元素的原点位置的集合,其中平移的B与A的背景并不叠加。
    膨胀
    膨胀是在二值图像中“加长”或“变粗”的操作。这种特殊的方式和变粗的程度由一个称为结构元素的集合控制。结构元素通常用0和1的矩阵表示。数学上,膨胀定义为集合运算。A被B膨胀,记为A⊕B,定义为:
    膨胀运算膨胀运算
    其中,Φ为空集,B为结构元素。总之,A被B膨胀是所有结构元素原点位置组成的集合,其中映射并平移后的B至少与A的某些部分重叠。这种在膨胀过程中对结构元素的平移类似于空间卷积。
    膨胀满足交换律,即A⊕B=B⊕A。在图像处理中,我们习惯令A⊕B的第一个操作数为图像,而第二个操作数为结构元素,结构元素往往比图像小得多。
    膨胀满足结合律,即A⊕(B⊕C)=(A⊕B)⊕C。假设一个结构元素B可以表示为两个结构元素B1和B2的膨胀,即B=B1⊕B2,则A⊕B=A⊕(B1⊕B2)=(A⊕B1)⊕B2,换言之,用B膨胀A等同于用B1先膨胀A,再用B2膨胀前面的结果。我们称B能够分解成B1和B2两个结构元素。结合律很重要,因为计算膨胀所需要的时间正比于结构元素中的非零像素的个数。通过结合律,分解结构元素,然后再分别用子结构元素进行膨胀操作往往会实现很客观的速度的增长。

    开启

    A被B的形态学开
    开运算开运算
    运算可以记做A?B,这种运算是A被B腐蚀后再用B来膨胀腐蚀结果,即:
    开运算的数学公式为:
    其中
    开运算开运算
    ,∪{·}指大括号中所有集合的并集。该公式的简单几何解释为:A?B是B在A内完全匹配的平移的并集。形态学开运算完全删除了不能包含结构元素的对象区域,平滑了对象的轮廓,断开了狭窄的连接,去掉了细小的突出部分。

    闭合

    A被B形态学闭运算记做A·B,它是先膨胀后腐蚀的结果:
    从几何学
    闭运算闭运算
    上讲,A·B是所有不与A重叠的B的平移的并集。想开运算一样,形态学闭运算会平滑对象的轮廓。然后,与开运算不同的是,闭运算一般会将狭窄的缺口连接起来形成细长的弯口,并填充比结构元素小的洞。
    基于这些基本运算可以推导和组合成各种数学形态学实用算法,用它们可以进行图像形状和结构的分析及处理,包括图像分割、特征提取、边界检测、图像降噪、图像增强和恢复等。

    图像分析

    编辑
    从图像中抽取某些有用的度量、数据或信息。目的是得到某种数值结果,而不是产生另一个图像。图像分析的内容和模式识别、人工智能的研究领域有交叉,但图像分析与典型的模式识别有所区别。图像分析不限于把图像中的特定区域按固定数目的类别加以分类,它主要是提供关于被分析图像的一种描述。为此,既要利用模式识别技术,又要利用关于图像内容的知识库,即人工智能中关于知识表达方面的内容。图像分析需要用图像分割方法抽取出图像的特征,然后对图像进行符号化的描述。这种描述不仅能对图像中是否存在某一特定对象作出回答,还能对图像内容作出详细描述。
    图像处理的各个内容是互相有联系的。一个实用的图像处理系统往往结合应用几种图像处理技术才能得到所需要的结果。图像数字化是将一个图像变换为适合计算机处理的形式的第一步。图像编码技术可用以传输和存储图像。图像增强和复原可以是图像处理的最后目的,也可以是为进一步的处理作准备。通过图像分割得出的图像特征可以作为最后结果,也可以作为下一步图像分析的基础。
    图像匹配、描述和识别对图像进行比较和配准,通过分制提取图像的特征及相互关系,得到图像符号化的描述,再把它同模型比较,以确定其分类。图像匹配试图建立两张图片之间的几何对应关系,度量其类似或不同的程度。匹配用于图片之间或图片与地图之间的配准,例如检测不同时间所拍图片之间景物的变化,找出运动物体的轨迹[4]  。
    从图像中抽取某些有用的度量、数据或信息称为图像分析。图像分析的基本步骤是把图像分割成一些互不重叠的区域,每一区域是像素的一个连续集,度量它们的性质和关系,最后把得到的图像关系结构和描述景物分类的模型进行比较,以确定其类型。识别或分类的基础是图像的相似度。一种简单的相似度可用区域特征空间中的距离来定义。另一种基于像素值的相似度量是图像函数的相关性。最后一种定义在关系结构上的相似度称为结构相似度。
    以图片分析和理解为目的的分割、描述和识别将用于各种自动化的系统,如字符和图形识别、用机器人进行产品的装配和检验、自动军事目标识别和跟踪、指纹识别、X光照片和血样的自动处理等。在这类应用中,往往需综合应用模式识别和计算机视觉等技术,图像处理更多的是作为前置处理而出现的。
    多媒体应用的掀起,对图像压缩技术的应用起了很大的推动作用。图像,包括录像带一类动态图像将转为数字图像,并和文字、声音、图形一起存储在计算机内,显示在计算机的屏幕上。它的应用将扩展到教育、培训和娱乐等新的领域[5]  。

    应用

    编辑
    摄影及印刷
    卫星图像处理(Satellite image processing)
    医学图像处理(Medical image processing)
    面孔识别,特征识别(Face detection, feature detection, face identification)
    显微图像处理(Microscope image processing)
    汽车障碍识别(Car barrier detection)[6] 

    常见软件

    编辑

    Adobe Photoshop

    软件特点:知名度以及使用率最高的图像处理软件
    软件优势:使用业界标准的Adobe PhotoshopCS软件更加快速地获取更好效果,同时为图形和Web设计、摄影及视频提供必不可少的新功能。
    与同行软件的比较:这回Adobe的确给设计师们带来了很大的惊喜,Photoshop CS新增了许多强有力的功能,特别是对于摄影师来讲,这次它大大突破了以往Photoshop系列产品更注重平面设计的局限性,对数码暗房的支持功能有了极大的加强和突破。
    近期版本:2016年11月2日,Adobe 公司更新了旗下 Photoshop CC 2017最新版。[7] 

    Adobe Illustrator

    软件特点:专业矢量绘图工具,功能强大,界面友好。
    软件优势:无论您是生产印刷出版线稿的设计者和专业插画家、生产多媒体图像的艺术家、还是互联网页或在线内容的制作者,都会发现Illustrator不仅仅是一个艺术产品工具,能适合大部分小型设计到大型的复杂项目。
    与同行软件的比较:功能极其强大,操作相当专业。与Adobe公司其它软件如Photoshop、Primiere及Indesign等软件可以良好的兼容,在专业领域优势比较明显。

    CorelDRAW

    软件特点:界面设计友好,空间广阔,操作精微细致。兼容性佳。
    软件优势:非凡的设计能力广泛地应用于商标设计、标志制作、模型绘制、插图描画、排版及分色输出等等诸多领域。市场领先的文件兼容性以及高质量的内容可帮助您将创意变为专业作品。从与众不同的徽标和标志到引人注目的营销材料以及令人赏心悦目的Web图形,应有尽有。
    与同行软件的比较:功能强大,兼容性极好,可生成各种与其它软件相兼容的格式,操作较Illustrator简单,在国内中小型广告设计公司应用率极高。

    可牛影像

    软件特点:可牛影像是新一代的图片处理软件,独有美白祛痘、瘦脸瘦身、明星场景、多照片叠加等功能,更有50余种照片特效,数秒即可制作出影楼级的专业照片。
    软件优势:图片编辑、人像美容、场景日历、添加水印饰品、添加各种艺术字体、制作动感闪图、摇头娃娃、多图拼接,使人能想到的功能,应有尽有,而且简单易用。
    与同行软件的比较:场景日历、动感闪图、摇头娃娃等都是传统图像处理软件所没有的。有了可牛影像,不需要再像photoshop那样,需要专业的技能才能处理照片。

    光影魔术手

    软件特点:“nEO iMAGING”〖光影魔术手〗是一个对数码照片画质进行改善及效果处理的软件。简单、易用,不需要任何专业的图像技术,就可以制作出专业胶片摄影的色彩效果。
    软件优势:模拟反转片的效果,令照片反差更鲜明,色彩更亮丽,模拟反转负冲的效果,色彩诡异而新奇,模拟多类黑白胶片的效果,在反差、对比方面,和数码相片完全不同。
    与同行软件的比较:是一个照片画质改善和个性化处理的软件。简单、易用,每个人都能制作精美相框、艺术照、专业胶片效果,而且完全免费。

    ACDSee

    软件特点:不论您拍摄的相片是什么类型-家人与朋友的,或是作为业余爱好而拍摄的艺术照-您都需要相片管理软件来轻松快捷地整理以及查看、修正和共享这些相片。
    软件优势:ACDSee 9可以从任何存储设备快速“获取相片”,还可以使用受密码保护的“隐私文件夹”这项新功能来存储机密信息。
    与同行软件的比较:强大的电子邮件选项、幻灯放映、CD/DVD刻录,还有让共享相片变得轻而易举的网络相册工具。使用红眼消除、色偏消除、曝光调整以及“相片修复”工具等快速修正功能来改善相片。

    Macromedia Flash

    软件特点:一个可视化的网页设计和网站管理工具,支持最新的Web技术,包含HTML检查、HTML格式控制、HTML格式化选项等。
    软件优势:除了新的视频和动画特性,还提供了新的绘图效果和更好的脚本支持,同时也集成了流行的视频辑和编码工具,还提供软件允许用户测试移动手机中的Flash内容等新功能。
    与同行软件的比较:在编辑上你可以选择可视化方式或者你喜欢的源码编辑方式。

    Ulead GIF Animator

    软件特点:友立公司出版的动画GIF制作软件,内建的Plugin有许多现成的特效可以立即套用,可将AVI文件转成动画GIF文件,而且还能将动画GIF图片最佳化,能将你放在网页上的动画GIF图档减肥,以便让人能够更快速的浏览网页。
    软件优势:这是一个很方便的GIF 动画制作软件,由Ulead Systems.Inc 创作。Ulead GIF Animator 不但可以把一系列图片保存为GIF 动画格式,还能产生二十多种2D 或3D 的动态效果,足以满足您制作网页动画的要求。
    与同行软件的比较:与其它图形文件格式不同的是, 一个GIF文件中可以储存多幅图片,这时, GIF 将其中存储的图片像播放幻灯片一样轮流显示, 这样就形成了一段动画[8]  。



    展开全文
  • 图像处理-椭圆检测

    千次阅读 2019-05-16 10:11:18
    边界聚类椭圆检测算法经典椭圆检测方法投票(聚类)方法随机hough变换椭圆检测算法最优化方法基于弧段的方法边界聚类算法流程预处理边界像素连接线段列提取线段列旋转方向统一凹点和角点检测圆弧聚类再配对直接最小...

    经典椭圆检测方法

    椭圆检测算法经过多年的研究发展,已经基本形成一个较完整的体系。它们大致可以分为三类即投票(聚类)、最优化、基于弧段的方法。

    投票(聚类)方法

    椭圆因为有中心位置坐标、长短轴长度、倾斜角五个参数,标准霍夫变换有较强的鲁棒性,但对内存要求高,运算效率低,不太现实。霍夫变换类算法以霍夫变换为算法基础,经过不同国家研究人员多年的不懈努力研究,如今已衍生出很多改进算法,它们各有优劣。随机霍夫变换算法相对标准霍夫变换计算速度有较大提升,但检测相互遮挡的椭圆时准确度低。

    随机hough变换椭圆检测算法

    随机椭圆检测结合使用了了最小二乘法和Hough变换算法。第一步预处理,获得较理想的边缘图。第二步随机选取三个点,取这三点为中心相同大小的邻域中所有点,用最小二乘法把它们拟合成一个椭圆。如图2-3所示。第三步从边缘点中再随机选取第四个点,判断此点是否在拟合出的圆上。若是,则认为该椭圆是真实椭圆的可能性较大,接着收集证据,验证该椭圆的真实性。

    图2-3 随机选点示意图
    算法具体过程如下(从第二步开始):
    1.把边缘检测得到的点收进集合V中,失败计数器f初始值设为0。设定5个阈值,分别是能容忍的失败次数最大值Tf,检测进行时对V中边缘点数量的要求阈值Tem,随机选取的三点之间两两距离最小值Ta,随机选取的第四点到可能椭圆边界距离的最大值Td,以及椭圆残缺比率阈值Tr。
    2.np表示集合V中剩余的点的数量,当np小于Tem时或当失败次数f大于Tf时停止检测,算法终止;否则从V中随机取四点,并从V中删除这四点。
    3.若用来求解椭圆参数的三个点两两之间距离都大于Ta,拟合出椭圆,计算第四个点到该椭圆边界的距离,若距离小于Td,执行第4步;若不满足两者之一,将这四个点返回到V中,失败次数加一,回到第2步执行。
    4.设E为第3步拟合出来的椭圆,初始化满足阈值Td的点的个数num。遍历V中点,计算并判断它们到椭圆E的边界的距离是否小于Td,若是则num=num+1,并将该点从V中除去,直到遍历完成。
    5.若num>=Tr*K,其中K为椭圆E的周长,那么跳转到第6步;否则认为椭圆E不是真实的椭圆,将第4步和第2步中删除的num+4个点返回V中,并跳转到第2步。
    6.认为椭圆E是一个真实存在的椭圆,f置0,并跳转到第2步。
    随机hough变换的优缺点如下:
    第一,由于该算法是基于最小二乘法,所以一方面检测结果往往比真实椭圆小而且对噪声敏感,但是另一方面当预处理效果较好时检测精度很高。
    第二,由于该算法基于随机采样,所以一方面可能会有所选点距离较近的情况造成拟合出的椭圆偏差较大,但是另一方面因为随机采样的灵活性检测速度提升了。
    第三,一方面当参数选取的较好时检测又快有准确;另一方面,由于该算法严格由参数Ta,Td,Tr控制而且这些参数不易取到合适值,所以会出现不合适的参数不仅增加计算量,而且增加误检机会的情况。

    最优化方法

    最优化类方法优点在其精度上,缺点是其一次只能处理一个图形,即此前要对图像信息进行分类分离。AndrewFitzgibb等人提出了直接最小二乘法椭圆拟合算法。该方法能保证拟合出来的一定是椭圆。但该方法受到孤立点和噪声点的影响。目前最优化算法多与其他算法一起结合使用。

    基于弧段的方法

    基于边界聚类的椭圆检测方法结合使用了基于弧段的方法和最小二乘法。从边界图提取圆弧,再经过过滤、聚类,最终用最小二乘法拟合出椭圆。该方法能有效应对多个椭圆、椭圆相互遮挡和椭圆部分缺损等复杂情况,因而引起了广泛的注意。

    边界聚类算法流程

    边界聚类算法属于从下往上结构的算法。算法步骤主要分为三步,分别是预处理,边界聚类和直接最小二乘法拟合椭圆三个过程。流程图如下所示:
    在这里插入图片描述

    预处理

    预处理第一步是进行灰度变换。灰度化常用的方法也就是依据亮度方程来实现的,即依据人眼对不同颜色的敏感度不同,对RGB分量以不同系数的加权平均。
    在这里插入图片描述
    第二是降噪。去噪手段对应于噪声的两种分类主要有两种。噪声功率谱符合高斯函数时用可以用高斯平滑模板平滑。由于脉冲干扰等产生的噪声(即椒盐噪声)可以采用中值滤波去除。
    第三步是边界检测。通常图像中边界点都是图像中亮度梯度比较大的点,这些点包含了我们检测要用到的图像特征信息。边界检测最常用的方法是Canny算法。该算法主要分四个部分。一、降噪。方法是让原始图像和所用的高斯模板作卷积,模板在使用前指定了标准差。 二、寻找亮度梯度。Canny算法使用4个模板检测边缘的方向,,它们分别是水平、垂直、主对角线和副对角线方向;遍历圆图上的每个像素点,让原始图像中以该点为中心以该模板为窗口内的所有点与该模板作卷积,我们就从原图获得了各个点亮度梯度图和亮度梯度的方向。三、非极大值抑制。该过程目的是获得单像素的候选边缘,主要操作是将非零像素点所在的区域进行细化。具体过程如下:对于图3-2中一点P(x,y),计算P点梯度方向与其8-连通邻域点所组成的正方形的交点 (x1,y1)和(x2,y2)。如图2-5,交点坐标通过插值法得到。如果中间点的值大于这两个交点值,那么P点值不变,如若不然置零。四、滞后阈值操作。它需要设置两个阈值t1与t2。t1等于边界像素数除以总像素数,这些点称之为强边缘像素。t2等于t1除以2, t2和 t1之间的点称之为弱边缘像素。最后通过将8-连通的弱像素集成到强像素,再把它们连接起来,得到边界图。
    在这里插入图片描述
    第四步是二值化。二值化的效果几乎完全取决于分割阈值的选取。所以自动寻找最佳分割阈值的方法就显得十分关键。找到图片二值化的一个合适的分割阈值的一种方法是按图像的灰度特性,将图像分成背景和目标两部分,背景和目标之间的类间方差最大的分割意味着错分概率最小。MATLAB 的Graythresh函数就是使用该方法来获得一个自适应阈值作为二值化的分割依据。
    第五步,二值化后,因为椭圆弧附近的非相关像素会严重影响检测结果,因此为了大幅度减少非相关像素,本文用形态学的腐蚀操作来得到细化的边界。

    边界像素连接

    采用Kovesi的边界连接算法,以8-邻域连通准则从上至下,从左至右扫描二值图像,将边界像素连接为有向边界列。然后采用边界列中像素数阈值条件去除像素数较小的集合。因为若边界列像素数少于阈值数,则很有可能是噪声或背景,应当删除。具体步骤如下:
    1.以8-邻域连通准则从上至下,从左至右扫描二值图像,按连通区域对图像中的像素点聚类。
    2.寻找每一个连通域中边界像素中所有的结束点和分叉点(分叉点是三条以上曲线的交点)并存储。
    3.以这些结束点和分叉点为结束标志,让每一个连通域中的像素点集合分割为遇到结束点和连接点就断开的小集合。
    4.删除这些集合中像素数小于某一阈值的部分。

    线段列提取

    因为图像光栅化难以获得准确的切线,而后续过程需要用到圆弧的切线,所以要进行线段拟合,即用多段折线代替原来的圆弧。具体步骤如下:
    1.取边界像素连接成的第i条有向边界列,判断是否超过边界列总数目total,若不是进行步骤2,若是终止算法。
    2.判断该边界列是否已经完成处理,若为否则进行第3步;若是则i=i+1,重新进行步骤2.
    3.从其中第三个点开始,计算第一个点到这个点(记为点j)的连线方程,并依次判断第一个点和该点之间的所有点到该连线的距离,若所有距离均小于某一阈值,则j=j+1,重新进行步骤3,否则该有向边界列从该处断开,前面部分只保留第一个点和第j个点,前面j个点构成的连线用第一点和第j点之间的直线连线代替;后面部分仍然记为边界列i,
    4.判断步骤3中断开的有向边界列后面部分像素数是否小于某阈值,若是则删除掉,否则不处理。最后跳转到步骤1。
    完成这一个过程后一个连通域的的像素点构成的曲线就变成了其中部分像素点构成的一条折线。经过这个过程虽然像素信息损失了一部分,但是求取圆弧切线的精度从某种意义上说提高了,因为没有了光栅化效应。而且数据少了处理变得简单。再采用线段数阈值条件去除较短的线段列。若线段数数少于阈值数,则很有可能是噪声或背景或者进行拟合时误差过大,因此须删除。

    线段列旋转方向统一

    本文将所有线段列旋转方向统一为逆时针方向。
    假设图3-4中的黑点为线段列中的点,箭头代表线段列的方向,P1(x1,y1),P2(x2,y2),P3(x3,y3)为线段列中连续的三个像素,像素都引入z坐标,且令其为0,则P1(x1,y1,0),P2(x2,y2,0),P3(x3,y3,0),空间向量
    P1P2=(x2-x1,y2-y1,0)         (3-2)P2P3=(x3-x2,y3-y2,0)         (3-3)
    向量积
    P1P2×P2P3=|■(i ⃗&j ⃗&k ⃗@x2-x1&y2-y1&0@x3-x2&y3-y2 &0)|=(0,0,(x2-x1)(y3-y2)-(x3-x2)(y2-y1))         (3-4)
    对一个线段列中除去首尾两个点的所有点像P2点一样计算并判别和存储,若小于0的次数最多,则认为线段列的旋转方向是顺时针,将线段列中的点逆序处理;若大于0的次数最多,则认为线段列的旋转方向是逆时针。
    在这里插入图片描述

    凹点和角点检测

    在确定线段列的旋转方向为逆时针方向后,检测凹点和角点方法同前面统一线段列旋转方向类似,对一个线段列中除去首尾两个点的所有点计算P1P2×P2P3并判断向量积第三个分量的大小,若小于0,则P2为凹点。因为边界波动可能引入冗余凹点也即因边界检测误差可能错判一些正常点为凹点而进修分割会导致检测率下降,所以增加一个角度判断过程,即前面向量积为0并且P1P2和P2P3的夹角大于某阈值,才为凹点,这样选择合适的阈值可保证凹点检测的准确性。若向量积大于0且P1P2和P2P3的夹角大于另一阈值,则认为该点角度变化过大,是角点,线段列有很大可能性不是椭圆弧,而有可能是三角形、矩形等图形的边角,因此从该点分割该线段列。分割完成后,过滤掉含点数较少的线段列,即可除掉部分非椭圆弧。留下的线段列认为是椭圆弧,参加后续的聚类。如图3-5所示,左上角的P2很可能是凹点,右下角的P2很可能是角点。
    在这里插入图片描述

    圆弧聚类

    圆弧聚类是将属于同一椭圆但是分开的两条或多条椭圆弧进行聚类。在进行聚类前,首先要判断弧段的完整度。一般用弧段的首尾端点P1,P3与中点P2构成的两向量P2P1,P2P3的夹角的大小来进行判断。夹角越小,一般该椭圆弧越完整,夹角越大,一般认为椭圆弧缺损越严重。设定一个阈值,当夹角小于该阈值时认为该弧段已经足够完整,仅仅靠该弧段上的点就可以较准确地拟合出真实存在的椭圆,因此该弧段不需要参与后面的聚类过程。如果希望该阈值自适应,在划分待聚类椭圆弧和不须聚类的弧(较完整弧)之前,先要确定该阈值。用直接最小二乘法拟合该弧所在的椭圆,若较圆,为了减小的误差,应使阈值夹角稍微大一些,如90度;若该弧所在的椭圆较扁,应使阈值夹角稍微小一些,如60度。接下来才根据该自适应阈值进行对圆弧判断。当大于阈值时认为该弧段上的点过少,不足以拟合出准确的椭圆,需要找到和该弧段属于同一椭圆的弧段然后用它们所有的点一起拟合出一个椭圆。经过此判断过程,椭圆弧就被分成两组。把需要参加聚类的椭圆弧按照含点数的数目由多到少进行排列,下面的过程都按照数目多的弧段优先的顺序进行。
    对于待聚类的椭圆弧,先要定义其搜索区域,由于椭圆是封闭图形,所以整个椭圆可以确定是在其任何一部分弧和弧两端点的切线所在的射线包围起来的区域里面,属于该椭圆的其他弧以确定是在该弧对应的弦和弧两端点的切线所在的射线包围起来的区域里面。这就是我们搜索的区域。在图中a1的搜索区域也就是射线l1,l2,弦l3和图像边缘范围内的区域,在这个区域里面找弧,可以缩小搜寻的范围,提高效率。判断一条弧是否在待聚类椭圆弧的搜索区域里面我们只需取这条弧的首末端点j3,j4是否在搜索区域。方法是分别求过这两点同时平行于待聚类椭圆弧对应弦l3的直线和切线的交点,若交点分别有两个,交点都在射线上且这两个端点在对应两个交点之间则该弧段在搜索区域内。图中明显a2,a3,a4在a1的搜索区域内而a5不在。
    在这里插入图片描述
    待聚类椭圆弧找到待配对的圆弧后用两种约束条件判断它们到底是否属于同一椭圆。约束一是利用一个椭圆任意两段弧弧中点之间的距离大于一个弧中点到另一个弧首末端点连线的中点之间的距离,在图中即为
    在这里插入图片描述
    用来去除图中a2类型的椭圆弧。右图(b)不满足,左图(a)同时满足这两个关系,进入下一步,再用约束二进行判断。
    在这里插入图片描述
    约束二是点到拟合椭圆边界距离条件。我们只需要让两条线段列中的点一起参与椭圆拟合,按照下面公式计算所有这些点到拟合出椭圆边界的距离。设置一距离阈值,当d_i小于该阈值认为该点落在该椭圆上,否则该点不在这个椭圆上。统计d_i中小于某一阈值的点的数量,若大于某一比例(比例阈值),则认为这两条弧属于同一椭圆,否则不属于同一椭圆。判定后将属于同一椭圆的弧段聚类到一起。
    在这里插入图片描述
    其中
    其中:x^'=(x_i-x_0)cos⁡〖θ+(y_i-y_0)sin⁡θ 〗,y^'=-(x_i-x_0)sin⁡〖θ+(y_i-y_0)cos⁡θ 〗。
    在这里插入图片描述
    如上图(a)中的参与拟合的点较多都落在拟合的椭圆上,所以有较大可能满足约束二条件;(b)中大多数拟合点点离拟合出的椭圆边界有一定距离,有较大可能不满足约束条件二。
    如果希望这两个阈值改为自适应的,方法是先拟合出椭圆,判断椭圆大小。若椭圆较小,应适当降低限制,即增大距离阈值,减小比例阈值;若椭圆较大,应适当提高限制,即减小距离阈值,增大比例阈值。本算法中选取的是,若椭圆的短轴小于50则距离阈值为0.05,比例阈值设为0.7;否则前者取0.03,后者取0.8。

    再配对

    聚类后的弧和较完整弧或者两个较完整弧可能属于同一椭圆但是在前面的步骤它们只是被分开了并没有配对,所以有必要增加再匹配过程,增加检测准确度。匹配方法还是约束条件二的方法。因为该方法和原算法的去伪过程相似,所以经过该方法后无需再去伪。

    直接最小二乘法椭圆拟合

    前面的很多步骤都删除了像素点较少的集合,或者用少数点代替了边界列中的很多点,或者是分割后再删除点数较少的集合的,这些操作到椭圆拟合这一步实际上基本上去除了所有的背景和噪声,甚至包括一部分有用信息。所以即使对噪声和孤立点敏感的直接最小二乘法也可以用来拟合椭圆,而且因为该方法对椭圆缺损不敏感,所以非常适合。

    实验效果

    边界聚类算法检测结果

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    边界聚类算法和随机霍夫变换算法比较

    用时比较在这里插入图片描述
    检测结果比较
    左图是选点情况;右图是拟合的椭圆和真实椭圆的差异
    在这里插入图片描述
    随机霍夫变换算法检测结果
    在这里插入图片描述
    边界聚类算法检测结果

    展开全文
  • 理解图像中基本概念:色调、色相、饱和、对比、亮度 对比: 对比指不同颜色之间的差别。对比越大,不同颜色之间的反差越大,即所谓黑白分明,对比度过大,图像就会显得很刺眼。对比越小,不同颜色之间...
  • 图像处理中的椭圆拟合(一)

    千次阅读 2019-06-05 16:30:25
    图像处理中的椭圆检测用处还是挺多的,找到这里来的同学大多是想用椭圆检测来解决某些实际问题吧,所以我就不做介绍,直奔主题。我研究这块也有一段时间了,也查找了挺多资料,貌似通用的椭圆算法还没有,不排除我...
  • 图像处理之霍夫变换(直线检测算法)

    万次阅读 多人点赞 2016-11-01 20:35:59
    图像处理之霍夫变换(直线检测算法) 霍夫变换是图像变换中的经典手段之一,主要用来从图像中分离出具有某种相同特征的几何 形状(如,直线,等)。霍夫变换寻找直线与的方法相比与其它方法可以更好的减少噪 声...
  • matlab 求图像的连通区域的圆度并可视化
  • 图像处理与识别学习小结

    万次阅读 热门讨论 2009-08-31 23:14:00
    图像处理与识别学习小结 数字图像处理是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况...
  • python图像处理较为全面

    万次阅读 2018-06-28 19:08:01
    第 1 章 基本的图像操作和处理本章讲解操作和处理图像的基础知识,将通过大量...1.1 PIL:Python图像处理类库PIL(Python Imaging Library Python,图像处理类库)提供了通用的图像处理功能,以及大量有用的基本图...
  • 数字图像处理期中学习报告

    千次阅读 2018-09-07 19:26:28
    数字图像处理数字图像处理 一学习内容总结 第一章 绪论 1 什么是数字图像处理 2 使用数字图像处理领域的实例 3 数字图像处理的基本步骤 4 图像处理系统的组成 第二章 数字图像处理基础 1 视觉感知要素 2 光和电磁...
  • 数字图像处理第六章数字图像处理---彩色图像处理(一) 在 MATLAB 中彩色图像的表示(二)仿射变换(三)投影变换(四)应用于图像的几何变换(五)MATLAB 中的图像坐标系统5.1 输出图像位置5.2 控制输出网格(六)...
  • 医学图像处理综述

    千次阅读 2019-07-10 19:38:06
    医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像种类主要有X-射线成像 (X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波成像(UI)四类。在目前的影像医疗诊断中,主要是通过...
  • 自《图像处理中的数学修炼》原书第一版于2017年2月上市以来,加印重印多次,在京东和当当等主流在线购书网站上已经累计有超过3200个有效购买评论,并且在这两个网站上的好评都超过99%。结合第一版书籍读者给出的...
  • 数字图像处理第九章数字图像处理---形态学图像处理(一)预备知识1.1 预备知识1.1.1 集合理论中的基本概念1.2 二值图像、集合及逻辑算子(二)膨胀和腐蚀2.1 膨胀2.2 结构元的分解2.3 strel函数2.4 腐蚀(三) 膨胀...
  • 《数字图像处理》复习提纲

    千次阅读 2019-06-11 09:44:34
    本文在撰写过程中参考了由何东健教授主编、西安电子科技大学出版社出版的《数字图像处理》(第三版),一切著作权归原书作者和出版社所有。特别感谢长安大学软件系老师的认真负责的教导。 第1章 概论 1.1 数字...
  • 图像处理与识别

    千次阅读 2016-07-01 08:45:03
    图像处理与识别学习小结   数字图像处理是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多...
  • 数字图像处理 物体测量与形状分析

    千次阅读 2017-02-23 18:17:21
    第十六章 物体测量与形状分析 目录 ...o 矩形 o 圆形 o 不变矩 o 轮廓的傅立叶描述子 3. 中轴变换与骨架提取 4. 曲线与表面的拟合 作业 1.物体测量  
  • VC数字图像处理编程讲座之十

    千次阅读 2007-07-20 05:12:00
    VC数字图像处理编程讲座之十 图像几何特性分析一、物体边界计算和记数 (一)邻接和连通 邻接和连通是图像的基本几何特性之一
1 2 3 4 5 ... 20
收藏数 9,894
精华内容 3,957
关键字:

图像处理圆度计算公式