图像处理源代码网站

2011-08-17 10:41:11 sky_freebird 阅读数 1212

最近忙着那个图像处理,Linux好久没有弄了,真是郁闷……

今天在找图像处理参考源代码的时候,无意中发现了KodersSourcebank,大有相见恨晚之感。这两个网站都是提供源代码搜索的网站,内容非常丰富,包括各种语言,各种开发协议的代码。其中Koders更是号称有225,816,744 lines code。而且,搜索到的源码又基本可以下载。SourceForge也是非常牛,大部分有名的开源项目在此都可以找到代码压缩包。

当然,开源代码大部分还是基于Unix/Linux的,如果你想在windows上使用,恐怕还要做一定的移植工作。又是Linux……

另外,有个http://fsa.ia.ac.cn(中科院自动化所自由软件协会),一个宣扬和倡导自由软件和Linux的组织,看了他们去年和今年精彩的活动(其中包括王垠《完全在Linux下工作——后续》的演讲),向往啊……

图像处理的源代码也找了不少,包括openCV,QccPack,GSL等等。更棒的是找到了这么一个网页,Computer Vision Source Code,汇集了网络上关于机器视觉的主要开源代码和SDK。内容实在太多了,扫了几眼,没有必要也没有可能全部下载,一个一个看都要花很多时间,还是先把网页保存起来,等哪天需要了在去找吧。向战斗在自由软件前线的大师们致敬,你们辛苦了,我一定会站在巨人的肩膀上,不然你们的努力白费的:)

some link for openCV:

源代码及文档下载:SOURCEFORGE.NET

INTEL的OPENCV主页

YAHOO OPENCV 的邮件列表

CMU(卡耐基-梅隆大学)的计算机视觉主页

OPENCV 更为详细的介绍

OPENCV 的常用问题与解答


2007-04-23 17:50:00 jianxiong8814 阅读数 7814

 

数字图像处理
代码下载
 
一个以BMP文件操作为基础的图像处理头文件,以下有不少源代码会用到它。
loadbmp.h

对图像进行二值化处理的源代码,编译后的可执行文件须带参数运行。
bivalue.cpp 使用方法:bivalue BMP文件名

对图像进行对角镜像处理(几何变换)的源代码,编译后的可执行文件须带参数运行。
cornermirror.cpp 使用方法:cornermirror BMP文件名

对图像进行离散余弦变换处理(图像变换)的源代码,编译后的可执行文件须带参数运行。
dct.cpp 使用方法:dct BMP文件名

对图像进行傅立叶变换处理(图像变换)的源代码,编译后的可执行文件须带参数运行。
fourier.cpp 使用方法:fourier BMP文件名

对图像进行高斯模糊处理(图像复原)的源代码,编译后的可执行文件须带参数运行。
gauss.cpp 使用方法:gauss BMP文件名

在图像中加入随机噪声的源代码,编译后的可执行文件须带参数运行。
gaussnoise.cpp 使用方法:gaussnoise BMP文件名

对图像进行直方图均衡处理的源代码,编译后的可执行文件须带参数运行。
histogrameq.cpp 使用方法:histogrameq BMP文件名

对图像进行水平镜像处理(几何变换)的源代码,编译后的可执行文件须带参数运行。
horzmirror.cpp 使用方法:horzmirror BMP文件名

利用LoG边缘算子法对图像进行边缘提取的源代码,编译后的可执行文件须带参数运行。
log.cpp 使用方法:log BMP文件名

对图像进行均值滤波处理(图像复原)的源代码,编译后的可执行文件须带参数运行。
mean.cpp 使用方法:mean BMP文件名

对图像进行中值滤波处理(图像复原)的源代码,编译后的可执行文件须带参数运行。
med.cpp 使用方法:med BMP文件名

对图像进行去除彩色处理的源代码,编译后的可执行文件须带参数运行。
nocolor.cpp 使用方法:nocolor BMP文件名

在图像中加入椒盐噪声的源代码,编译后的可执行文件须带参数运行。
peppernoise.cpp 使用方法:peppernoise BMP文件名

利用Prewitte边缘算子法对图像进行边缘提取的源代码,编译后的可执行文件须带参数运行。
prewitte.cpp 使用方法:prewitte BMP文件名

对图像进行医学伪彩色处理的源代码,编译后的可执行文件须带参数运行。
pseudocolor1.cpp 使用方法:pseudocolor1 BMP文件名

对图像进行遥感伪彩色处理的源代码,编译后的可执行文件须带参数运行。
pseudocolor2.cpp 使用方法:pseudocolor2 BMP文件名

利用Roberts边缘算子法对图像进行边缘提取的源代码,编译后的可执行文件须带参数运行。
roberts.cpp 使用方法:roberts BMP文件名

利用Sobel边缘算子法对图像进行边缘提取的源代码,编译后的可执行文件须带参数运行。
sobel.cpp 使用方法:sobel BMP文件名

对图像进行垂直镜像处理(几何变换)的源代码,编译后的可执行文件须带参数运行。
vertmirror.cpp 使用方法:vertmirror BMP文件名

对图像进行沃尔什变换处理(图像变换)的源代码,编译后的可执行文件须带参数运行。
walsh.cpp 使用方法:walsh BMP文件名

2015-11-12 12:02:09 lovegonghui 阅读数 3271

一、图像

1、调整:色彩平衡、亮度、对比度、色调/饱和度、Gamma矫正、阈值、灰度、负像、伪彩色、轮换通道、提取通道、过滤通道、亮度映射、均衡化。

2、平移

3、尺寸

4、裁剪

5、旋转:90CW,90CCW,任意角度、水平翻转、垂直翻转、转置

6、倾斜

7、修整

8、直方图

二、特效滤镜

1、模糊:平滑、高斯模糊、运动模糊、径向模糊

2、锐化:锐化、加强锐化、自由锐化、钝化蒙板

3、浮雕:调和浮雕、八方向浮雕、灰色浮雕、彩色浮雕

 4、杂点:新增杂点、雪花杂点

5、艺术:剪纸、素描、连环画、碧绿、棕褐、染色、冰冻、熔铸、暗调、对调、怪调

6、扭曲:挤压、球面、漩涡、波浪、摩尔纹

7、风格化:扩散、查找边缘、照亮边缘、灯光、马赛克、油画、曝光

8、其它:自定义、图像融合、魔术图、去红眼、艺术字符

三、科研应用

1、代数运算:加、减、乘、除、平均、求异、Max、Min

2、逻辑运算:与、或、非、异

3、图像分割:自适应阈值、面积测量、周长测量、消除小区域、边缘提取、轮廓跟踪、图像投影

4、形态学:腐蚀、膨胀、开运算、闭运算、细化、粗化

5、滤波器:均值滤波、平滑滤波、中值滤波、十字型滤波、最大值滤波、最小值滤波

6、边缘检测:Roberts、Sobel、Prewitt、Kirsch、Gauss-Laplacian、水平检测、垂直检测、边缘增强、边缘均衡化、自定义模板检测

效果图:

 

 源代码下载地址:http://download.csdn.net/detail/lovegonghui/9263401

2017-09-20 09:09:24 chauncygu 阅读数 10128

常用的一些图像处理Matlab源代码

#1:数字图像矩阵数据的显示及其傅立叶变换
#2:二维离散余弦变换的图像压缩
#3:采用灰度变换的方法增强图像的对比度
#4:直方图均匀化
#5:模拟图像受高斯白噪声和椒盐噪声的影响
#6:采用二维中值滤波函数medfilt2对受椒盐噪声干扰的图像滤波
#7:采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波
#8:图像的自适应魏纳滤波
#9:运用5种不同的梯度增强法进行图像锐化
#10:图像的高通滤波和掩模处理
#11:利用巴特沃斯(Butterworth)低通滤波器对受噪声干扰的图像进行平滑处理

#12:利用巴特沃斯(Butterworth)高通滤波器对受噪声干扰的图像进行平滑处理


1.数字图像矩阵数据的显示及其傅立叶变换

f=zeros(30,30);
f(5:24,13:17)=1;
imshow(f, 'notruesize');
F=fft2(f,256,256); % 快速傅立叶变换算法只能处矩阵维数为2的幂次,f矩阵不
                      % 是,通过对f矩阵进行零填充来调整   
F2=fftshift(F);      % 一般在计算图形函数的傅立叶变换时,坐标原点在
                      % 函数图形的中心位置处,而计算机在对图像执行傅立叶变换
                      % 时是以图像的左上角为坐标原点。所以使用函数fftshift进
                      %行修正,使变换后的直流分量位于图形的中心;
figure,imshow(log(abs(F2)),[-1 5],'notruesize');

 

 

 二维离散余弦变换的图像压缩

I=imread('cameraman.tif');           % MATLAB自带的图像
imshow(I);
clear;close all
I=imread('cameraman.tif');
imshow(I);
I=im2double(I);
T=dctmtx(8);
B=blkproc(I,[8 8], 'P1*x*P2',T,T');
Mask=[1 1 1 1 0 0 0 0
       1 1 1 0 0 0 0 0
       1 1 0 0 0 0 0 0
       1 0 0 0 0 0 0 0
       0 0 0 0 0 0 0 0
       0 0 0 0 0 0 0 0
       0 0 0 0 0 0 0 0
       0 0 0 0 0 0 0 0];
B2=blkproc(B,[8 8],'P1.*x',Mask);    % 此处为点乘(.*)
I2=blkproc(B2,[8 8], 'P1*x*P2',T',T);
figure,imshow(I2);                 % 重建后的图像

 

3.采用灰度变换的方法增强图像的对比度

I=imread('rice.tif');
imshow(I);
figure,imhist(I);
J=imadjust(I,[0.15 0.9], [0 1]);
figure,imshow(J);
figure,imhist(J);

 

 

4直方图均匀化

I=imread('pout.tif');  % 读取MATLAB自带的potu.tif图像
imshow(I);
figure,imhist(I);     
[J,T]=histeq(I,64);      % 图像灰度扩展到0~255,但是只有64个灰度级
figure,imshow(J);
figure,imhist(J);
figure,plot((0:255)/255,T); % 转移函数的变换曲线
J=histeq(I,32);
figure,imshow(J);   % 图像灰度扩展到0~255,但是只有32个灰度级
figure,imhist(J);

5模拟图像受高斯白噪声和椒盐噪声的影响

I=imread('eight.tif');
imshow(I) ;

J1=imnoise(I,'gaussian',0,0.02); % 叠加均值为0,方差为0.02的高斯噪声,可以用
                                       % localvar代替figure,imshow  (J1);

J2=imnoise(I,'salt & pepper',0.04); % 叠加密度为0.04的椒盐噪声。
                                          
figure,imshow(J2);

 

6采用二维中值滤波函数medfilt2对受椒盐噪声干扰的图像

I=imread('eight.tif');
imshow(I) ;

J2=imnoise(I,'salt & pepper',0.04); % 叠加密度为0.04的椒盐噪声。
                                          
figure,imshow(J2);

I_Filter1=medfilt2(J2,[3 3]);  %窗口大小为3×3
figure,imshow(I_Filter1);
I_Filter2=medfilt2(J2,[5 5]);  %窗口大小为5×5
figure,imshow(I_Filter2);
I_Filter3=medfilt2(J2,[7 7]);  %窗口大小为7×7
figure,imshow(I_Filter3);

 

 

7采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波

[I,map]=imread('eight.tif');
figure,imshow(I);title('original')
J1=imnoise(I,'gaussian',0,0.02); % 受高斯噪声干扰
M4=[0 1 0; 1 0 1; 0 1 0];
M4=M4/4;                 % 4邻域平均滤波
I_filter1=filter2(M4,J1);
figure,imshow(I_filter1,map);  

M8=[1 1 1; 1 0 1; 1 1 1];      % 8邻域平均滤波
M8=M8/8;
I_filter2=filter2(M8,J1);
figure,imshow(I_filter2,map); 

8图像的自适应魏纳滤波

[I,map]=imread('eight.tif');
figure,imshow(I);title('original')
J1=imnoise(I,'gaussian',0,0.02); % 受高斯噪声干扰
[K noise]=wiener2(J1, [5 5]);
figure,imshow(K);  

9运用5种不同的梯度增强法进行图像锐化

[I,map]=imread('3-22.jpg');
imshow(I,map);
I=double(I);
[Gx,Gy]=gradient(I);       % 计算梯度
G=sqrt(Gx.*Gx+Gy.*Gy);   % 注意是矩阵点乘

J1=G;
figure,imshow(J1,map);    % 第一种图像增强

J2=I;                   % 第二种图像增强
K=find(G>=7);
J2(K)=G(K);
figure,imshow(J2,map);

J3=I;                   % 第三种图像增强
K=find(G>=7);
J3(K)=255;
figure,imshow(J3,map);

J4=I;                   % 第四种图像增强
K=find(G<=7);
J4(K)=255;
figure,imshow(J4,map);

J5=I;                   % 第五种图像增强
K=find(G<=7);
J5(K)=0;
Q=find(G>=7);
J5(Q)=255;
figure,imshow(J5,map);   

10图像的高通滤波和掩模处理

[I,map]=imread('blood1.tif');
imshow(I,map);
H2=[-1 -1 -1;-1 -9 -1;-1 -1 -1];
J1=filter2(H2,I);             % 高通滤波
figure,imshow(J1,map);

I=double(I);
M=[1 1 1;1 1 1;1 1 1]/9;
J2=filter2(M,I);
J3=I-J2;                % 掩模
figure,imshow(J3,map);

11利用巴特沃斯(Butterworth)低通滤波器对受噪声干扰的图像进行平滑处理

I=imread('Saturn.tif');
imshow(I);
J1=imnoise(I,'salt & pepper');   % 叠加椒盐噪声
figure,imshow(J1);
f=double(J1);     % 数据类型转换,MATLAB不支持图像的无符号整型的计算
g=fft2(f);        % 傅立叶变换
g=fftshift(g);     % 转换数据矩阵
[M,N]=size(g);
nn=2;           % 二阶巴特沃斯(Butterworth)低通滤波器
d0=50;
m=fix(M/2); n=fix(N/2);
for i=1:M
       for j=1:N
           d=sqrt((i-m)^2+(j-n)^2);
           h=1/(1+0.414*(d/d0)^(2*nn));  % 计算低通滤波器传递函数
           result(i,j)=h*g(i,j);
       end
end
result=ifftshift(result);
J2=ifft2(result);
J3=uint8(real(J2));
figure,imshow(J3);                      % 显示滤波处理后的图像

12利用巴特沃斯(Butterworth)高通滤波器对受噪声干扰的图像进行平滑处理

I=imread('blood1.tif');
imshow(I);
f=double(I);     % 数据类型转换,MATLAB不支持图像的无符号整型的计算
g=fft2(f);        % 傅立叶变换
g=fftshift(g);     % 转换数据矩阵
[M,N]=size(g);
nn=2;           % 二阶巴特沃斯(Butterworth)高通滤波器
d0=5;
m=fix(M/2);
n=fix(N/2);
for i=1:M
       for j=1:N
           d=sqrt((i-m)^2+(j-n)^2);
           if (d==0)
              h=0;
           else
              h=1/(1+0.414*(d0/d)^(2*nn));% 计算传递函数
           end
result(i,j)=h*g(i,j);
end
end
result=ifftshift(result);
J2=ifft2(result);
J3=uint8(real(J2));
figure,imshow(J3);  % 滤波后图像显示

2009-08-07 22:58:00 bluewind23 阅读数 1389

最近忙着那个图像处理,Linux好久没有弄了,真是郁闷……

今天在找图像处理参考源代码的时候,无意中发现了KodersSourcebank,大有相见恨晚之感。这两个网站都是提供源代码搜索的网站,内容非常丰富,包括各种语言,各种开发协议的代码。其中Koders更是号称有225,816,744 lines code。而且,搜索到的源码又基本可以下载。SourceForge也是非常牛,大部分有名的开源项目在此都可以找到代码压缩包。

当然,开源代码大部分还是基于Unix/Linux的,如果你想在windows上使用,恐怕还要做一定的移植工作。又是Linux……

另外,有个http://fsa.ia.ac.cn/(中科院自动化所自由软件协会),一个宣扬和倡导自由软件和Linux的组织,看了他们去年和今年精彩的活动(其中包括王垠《完全在Linux下工作——后续》的演讲),向往啊……

图像处理的源代码也找了不少,包括openCV,QccPack,GSL等等。更棒的是找到了这么一个网页,Computer Vision Source Code,汇集了网络上关于机器视觉的主要开源代码和SDK。内容实在太多了,扫了几眼,没有必要也没有可能全部下载,一个一个看都要花很多时间,还是先把网页保存起来,等哪天需要了在去找吧。向战斗在自由软件前线的大师们致敬,你们辛苦了,我一定会站在巨人的肩膀上,不然你们的努力白费的:)

some link for openCV:

源代码及文档下载:SOURCEFORGE.NET

INTEL的OPENCV主页

YAHOO OPENCV 的邮件列表

CMU(卡耐基-梅隆大学)的计算机视觉主页

OPENCV 更为详细的介绍

OPENCV 的常用问题与解答