• python 大数据基础编程

    2018-09-09 21:45:16
    1. 随机数组 from numpy import * random.rand(4,4) 输出 array([[ 0.81273873, 0.93985098, 0.72256469, 0.83294612], [ 0.06087078, 0.85160009, 0.88331584, 0.8634025 ], [ 0.328648 , 0....

    1. 随机数组

     from numpy import *
     random.rand(4,4)
    
    输出
    array([[ 0.81273873,  0.93985098,  0.72256469,  0.83294612],
           [ 0.06087078,  0.85160009,  0.88331584,  0.8634025 ],
           [ 0.328648  ,  0.74410427,  0.07213059,  0.51864295],
           [ 0.73424426,  0.75289487,  0.56867247,  0.61839992]])

    2. 矩阵

    矩阵和逆矩阵
    randMat=mat(random.rand(4,4))
    randMat.I
    matrix([[ 0.33672204,  0.94254807, -1.46432126,  0.23631155],
            [ 1.47878348, -1.01914042,  0.23114864, -0.05431002],
            [-0.06186018,  0.38974979,  0.89236284, -0.45058119],
            [-1.60231928, -0.44524619,  1.58433726,  1.1328065 ]])

    3. 查找帮助信息

    from numpy import *
    help(zeros)
    Help on built-in function zeros in module numpy.core.multiarray:
    
    zeros(...)
        zeros(shape, dtype=float, order='C')
    
        Return a new array of given shape and type, filled with zeros.
    
        Parameters
        ----------
        shape : int or sequence of ints
            Shape of the new array, e.g., ``(2, 3)`` or ``2``.
        dtype : data-type, optional
            The desired data-type for the array, e.g., `numpy.int8`.  Default is
            `numpy.float64`.
        order : {'C', 'F'}, optional
            Whether to store multidimensional data in C- or Fortran-contiguous
            (row- or column-wise) order in memory.

    4. 计算矩阵行数和列数

     from numpy import *
     import operator
     a =mat([[1,2,3],[5,6,9]])
     a
    matrix([[1, 2, 3],
        [5, 6, 9]])
     shape(a)
    (2, 3)
     a.shape[0] #计算行数
    2
     a.shape[1] #计算列数
    3
    展开全文
  • python 大数据入门教程

    2018-12-07 17:35:38
    Python大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。 Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计...

    Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。

    Python数据分析与挖掘技术概述

    所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。
    数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。

    预先善其事必先利其器

    我们首先聊聊数据分析的模块有哪些:

    1. numpy 高效处理数据,提供数组支持,很多模块都依赖它,比如pandas,scipy,matplotlib都依赖他,所以这个模块都是基础。所以必须先安装numpy。
    2. pandas 主要用于进行数据的采集与分析
    3. scipy 主要进行数值计算。同时支持矩阵运算,并提供了很多高等数据处理功能,比如积分,微分方程求样等。
    4. matplotlib 作图模块,结合其他数据分析模块,解决可视化问题
    5. statsmodels 这个模块主要用于统计分析
    6. Gensim 这个模块主要用于文本挖掘
    7. sklearn,keras 前者机器学习,后者深度学习。

    下面就说说这些模块的基础使用。

    numpy模块安装与使用

    安装:
    下载地址是:http://www.lfd.uci.edu/~gohlke/pythonlibs/
    我这里下载的包是1.11.3版本,地址是:http://www.lfd.uci.edu/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
    下载好后,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
    安装的numpy版本一定要是带mkl版本的,这样能够更好支持numpy

    numpy简单使用

    import numpy
    
    x=numpy.array([11,22,33,4,5,6,7,])  #创建一维数组
    x2=numpy.array([['asfas','asdfsdf','dfdf',11],['1iojasd','123',989012],["jhyfsdaeku","jhgsda"]])    #创建二维数组,注意是([])
    
    x.sort()   #排序,没有返回值的,修改原处的值,这里等于修改了X
    x.max()    # 最大值,对二维数组都管用
    x.min()    # 最小值,对二维数组都管用
    x1=x[1:3]   # 取区间,和python的列表没有区别

    生成随机数

    主要使用numpy下的random方法。

    #numpy.random.random_integers(最小值,最大值,个数)  获取的是正数
    data = numpy.random.random_integers(1,20000,30)   #生成整形随机数
    #正态随机数  numpy.random.normal(均值,偏离值,个数)  偏离值决定了每个数之间的差 ,当偏离值大于开始值的时候,那么会产生负数的。
    data1 = numpy.random.normal(3.2,29.2,10)    # 生成浮点型且是正负数的随机数

    pandas

    使用pip install pandas即可

    直接上代码:
    下面看看pandas输出的结果, 这一行的数字第几列,第一列的数字是行数,定位一个通过第一行,第几列来定位:

    print(b)
          0     1     2    3    
    0     1     2     3  4.0
    1  sdaf  dsaf  18hd  NaN
    2  1463  None  None  NaN

    常用方法如下:

    import pandas
    a=pandas.Series([1,2,3,34,])   # 等于一维数组
    b=pandas.DataFrame([[1,2,3,4,],["sdaf","dsaf","18hd"],[1463]])   # 二维数组
    print(b.head())  # 默认取头部前5行,可以看源码得知
    print(b.head(2))  # 直接传入参数,如我写的那样
    print(b.tail())   # 默认取尾部前后5行
    print(b.tail(1))     # 直接传入参数,如我写的那样

    下面看看pandas对数据的统计,下面就说说每一行的信息

    # print(b.describe())   # 显示统计数据信息
             3      # 3表示这个二维数组总共多少个元素
    count  1.0      # 总数
    mean   4.0      # 平均数
    std    NaN      # 标准数
    min    4.0      # 最小数
    25%    4.0      # 分位数
    50%    4.0      # 分位数
    75%    4.0      # 分位数
    max    4.0      # 最大值

    转置功能:把行数转换为列数,把列数转换为行数,如下所示:

    print(b.T)   # 转置
       0     1     2   
    0  1  sdaf  1463
    1  2  dsaf  None
    2  3  18hd  None
    3  4   NaN   NaN

    通过pandas导入数据

    pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码后者官网。

    CSV文件

    csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列,比如我有五列数据,那么它就在prinit输出结果的时候,就显示五列

    csv_data = pandas.read_csv('F:\Learnning\CSDN-python大数据\hexun.csv')
    print(csv_data)

    excel表格

    依赖于xlrd模块,请安装它。
    老样子,原滋原味的输出显示excel本来的结果,只不过在每一行的开头加上了一个行数

    excel_data = pandas.read_excel('F:\Learnning\CSDN-python大数据\cxla.xls')
    print(excel_data)

    读取SQL

    依赖于PyMySQL,所以需要安装它。pandas把sql作为输入的时候,需要制定两个参数,第一个是sql语句,第二个是sql连接实例。

    conn=pymysql.connect(host="127.0.0.1",user="root",passwd="root",db="test")
    sql="select * from fortest"
    e=pda.read_sql(sql,conn)

    读取HTML

    依赖于lxml模块,请安装它。
    对于HTTPS的网页,依赖于BeautifulSoup4,html5lib模块。
    读取HTML只会读取HTML里的表格,也就是只读取<table>标签包裹的内容.

    html_data = pandas.read_html('F:\Learnning\CSDN-python大数据\shitman.html')   # 读取本地html文件。
    html_from_online = pandas.read_html('https://book.douban.com/')  # 读取互联网的html文件
    print(html_data)
    print('html_from_online')

    显示的是时候是通过python的列表展示,同时添加了行与列的标识

    读取txt文件

    输出显示的时候同时添加了行与列的标识

    text_data = pandas.read_table('F:\Learnning\CSDN-python大数据\dforsay.txt')
    print(text_data)

    scipy

    安装方法是先下载whl格式文件,然后通过pip install “包名” 安装。whl包下载地址是:http://www.lfd.uci.edu/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl

    matplotlib 数据可视化分析

    我们安装这个模块直接使用pip install即可。不需要提前下载whl后通过 pip install安装。

    下面请看代码:

    from matplotlib import  pylab
    import numpy
    # 下面2行定义X轴,Y轴
    x=[1,2,3,4,8]
    y=[1,2,3,4,8]
    # plot的方法是这样使用(x轴数据,y轴数据,展现形式)
    pylab.plot(x,y)   # 先把x,y轴的信息塞入pylab里面,再调用show方法来画图
    pylab.show()    # 这一步开始画图,默认是至线图

    画出的图是这样的:
    image

    下面说说修改图的样式

    关于图形类型,有下面几种:

    1. 直线图(默认)
    2. - 直线
    3. -- 虚线
    4. -. -.形式
    5. : 细小虚线

    关于颜色,有下面几种:

    1. c-青色
    2. r-红色
    3. m-品红
    4. g-绿色
    5. b-蓝色
    6. y-黄色
    7. k-黑色
    8. w-白色

    关于形状,有下面几种:

    1. s 方形
    2. * 星形
    3. p 五角形

    我们还可以对图稍作修改,添加一些样式,下面修改圆点图为红色的点,代码如下:

    pylab.plot(x,y,'or')   # 添加O表示画散点图,r表示red
    pylab.show()

    image

    我们还可以画虚线图,代码如下所示:

    pylab.plot(x,y,'r:')
    pylab.show()

    还可以给图添加上标题,x,y轴的标签,代码如下所示

    pylab.plot(x,y,'pr--')   #p是图形为五角星,r为红色,--表示虚线
    pylab.title('for learnning')   # 图形标题
    pylab.xlabel('args')   # x轴标签
    pylab.ylabel('salary')   # y轴标签
    pylab.xlim(2)    # 从y轴的2开始做线
    pylab.show()

    image

    直方图

    利用直方图能够很好的显示每一段的数据。下面使用随机数做一个直方图。

    data1 = numpy.random.normal(5.0,4.0,10)   # 正态随机数
    pylab.hist(data1)
    pylab.show()

    image
    Y轴为出现的次数,X轴为这个数的值(或者是范围)

    还可以指定直方图类型通过histtype参数:

    图形区别语言无法描述很详细,大家可以自信尝试。

    1. bar :is a traditional bar-type histogram. If multiple data
      are given the bars are aranged side by side.
    2. barstacked :is a bar-type histogram where multiple
      data are stacked on top of each other.
    3. step :generates a lineplot that is by default
      unfilled.
    4. stepfilled :generates a lineplot that is by default
      filled.

    举个例子:

    sty=numpy.arange(1,30,2)
    pylab.hist(data1,histtype='stepfilled')
    pylab.show() 

    image

    子图功能

    什么是子图功能呢?子图就是在一个大的画板里面能够显示多张小图,每个一小图为大画板的子图。
    我们知道生成一个图是使用plot功能,子图就是subplog。代码操作如下:

    #subplot(行,列,当前区域)
    pylab.subplot(2,2,1)   # 申明一个大图里面划分成4块(即2*2),子图使用第一个区域(坐标为x=1,y=1)
    pylab.subplot(2,2,2)  # 申明一个大图里面划分成4块(即2*2),子图使用第二个区域(坐标为x=2,y=2)
    x1=[1,4,6,9]
    x2=[3,21,33,43]
    pylab.plot(x1,x2)   # 这个plot表示把x,y轴数据塞入前一个子图中。我们可以在每一个子图后使用plot来塞入x,y轴的数据
    pylab.subplot(2,1,2)  # 申明一个大图里面划分成2块(即),子图使用第二个区域(坐标为x=1,y=2)
    pylab.show()

    实践小例子

    我们现在可以通过一堆数据来绘图,根据图能够很容易的发现异常。下面我们就通过一个csv文件来实践下,这个csv文件是某个网站的文章阅读数与评论数。
    先说说这个csv的文件结构,第一列是序号,第二列是每篇文章的URL,第三列每篇文章的阅读数,第四列是每篇评论数。
    我们的需求就是把评论数作为Y轴,阅读数作为X轴,所以我们需要获取第三列和第四列的数据。我们知道获取数据的方法是通过pandas的values方法来获取某一行的值,在对这一行的值做切片处理,获取下标为3(阅读数)和4(评论数)的值,但是,这里只是一行的值,我们需要是这个csv文件下的所有评论数和阅读数,那怎么办?聪明的你会说,我自定义2个列表,我遍历下这个csv文件,把阅读数和评论数分别添加到对应的列表里,这不就行了嘛。呵呵,其实有一个更快捷的方法,那么就是使用T转置方法,这样再通过values方法,就能直接获取这一评论数和阅读数了,此时在交给你matplotlib里的pylab方法来作图,那么就OK了。了解思路后,那么就写吧。

    下面看看代码:

    
    csv_data = pandas.read_csv('F:\Learnning\CSDN-python大数据\hexun.csv')
    dt = csv_data.T   # 装置下,把阅读数和评论数转为行
    readers=dt.values[3]   
    comments = dt.values[4]
    pylab.xlabel(u'reads')
    pylab.ylabel(u'comments')   # 打上标签
    pylab.title(u"The Article's reads and comments")
    pylab.plot(readers,comments,'ob')
    pylab.show()

    image

     

    展开全文
  • 本系列课程包括Python3和R语言的编程基础,Python和R是大数据与机器学习的业界标准语言,本系列课程以实战突破为主线,让学员迅速掌握python3和R的核心基础知识。
  • 近年来,Python在大数据中的应用越来越广泛,在招聘网站上的人才需求也占去了大数据领域半壁江山,那么学习Python大数据将来能从事什么岗位?我们要先从Python所能从事的应用说起。  Python是一种面向对象、解释型...

          近年来,Python在大数据中的应用越来越广泛,在招聘网站上的人才需求也占去了大数据领域半壁江山,那么学习Python大数据将来能从事什么岗位?我们要先从Python所能从事的应用说起。

      Python是一种面向对象、解释型计算机程序设计语言。它有许多优点,最明显的是语法简洁而清晰和具有丰富和强大的类库。Python经常被称为胶水语言,这是因为它能够把用其他语言制作的各种模块很轻松地联结在一起。

      简而言之,Python就是用来深度学习的一种编程语言。Python大数据专业能从事的领域有很多,如:Python全栈工程师,Python爬虫工程师,Python开发工程师,金融自动化交易,Linux运维工程师,自动化开发工程师,前端开发工程师,大数据分析和数据挖掘等。

      下面就这些职位的职位要求举几个例子:

      一、Python全栈工程师·关键字:VUE、react、angularjs、node、webpack·)熟悉XML,(x)HTML,CSS,JavaScript,JSON,jQuery/Ajax等Web页面技术·熟悉bootstrap等主流前端框架者优先·能够使用Echarts等主流图表工具·熟练使用Python,Django,具备2年以上实际开发经验;·熟悉MySQL数据库,能够熟练编写sql语句进行数据库查询·了解Redis,Mongo等非关系型数据库·能够相对独立自主的完成前端及部分后端开发任务·熟悉python爬网技术,熟悉Scrapy、BeautifulSoup等爬虫框架及工具,具有网络爬取相关实践经验者优先·了解R语音并能够将部分R脚本翻译成python脚本者优先

      二、Python爬虫工程师·熟悉Linux系统,掌握Python等语·掌握网页抓取原理及技术,了解基于Cookie的登录原理,熟悉基于正则表达式、XPath、CSS等网页信息抽取技术·熟悉整个爬虫的设计及实现流程,有从事网络爬虫、网页信息抽取开发经验,熟悉反爬虫技术,有分布式爬虫架构经验·具有数据挖掘、自然语言处理、信息检索、机器学习背景者优先·熟悉ElasticSearch、Hadoop/Mysql,有多语言开发经验者优先

      三、Linux运维工程师·熟悉shell,能编写日常脚本,熟悉perl或python者优先·掌握Linux系统下常用服务架设与维护·熟悉常用的高可用软件,如LVS,heartbeat,keepalived等·熟悉mysql的安装、优化,能够实现mysql的高性能和高可用·熟悉nagios、cacti、zabbix等常用监控软件还希望广大学员对学习Python大数据将来能从事什么岗位这一问题多做了解,为自己将来的就业早做准备。​

    1.大数据的来源及应用,大数据主要有哪几种较为常用的功能

    http://www.duozhishidai.com/article-15386-1.html

    2.大数据领域开源工具有哪些

    http://www.duozhishidai.com/article-15379-1.html

    3.大数据工程师培训,需要学习的有哪些课程?

    http://www.duozhishidai.com/article-15081-1.html

    展开全文
  • 近年来,Python在大数据中的应用越来越广泛,在招聘网站上的人才需求也占去了大数据领域半壁江山,那么学习Python大数据将来能从事什么岗位?我们要先从Python所能从事的应用说起。 Python是一种面向对象、解释型...

    近年来,Python在大数据中的应用越来越广泛,在招聘网站上的人才需求也占去了大数据领域半壁江山,那么学习Python大数据将来能从事什么岗位?我们要先从Python所能从事的应用说起。

    Python是一种面向对象、解释型计算机程序设计语言。它有许多优点,最明显的是语法简洁而清晰和具有丰富和强大的类库。Python经常被称为胶水语言,这是因为它能够把用其他语言制作的各种模块很轻松地联结在一起。

    简而言之,Python就是用来深度学习的一种编程语言。Python大数据专业能从事的领域有很多,如:Python全栈工程师,Python爬虫工程师,Python开发工程师,金融自动化交易,Linux运维工程师,自动化开发工程师,前端开发工程师,大数据分析和数据挖掘等。

    下面就这些职位的职位要求举几个例子:

    一、Python全栈工程师·关键字:VUE、react、angularjs、node、webpack·)熟悉XML,(x)HTML,CSS,JavaScript,JSON,jQuery/Ajax等Web页面技术·熟悉bootstrap等主流前端框架者优先·能够使用Echarts等主流图表工具·熟练使用Python,Django,具备2年以上实际开发经验;·熟悉MySQL数据库,能够熟练编写sql语句进行数据库查询·了解Redis,Mongo等非关系型数据库·能够相对独立自主的完成前端及部分后端开发任务·熟悉python爬网技术,熟悉Scrapy、BeautifulSoup等爬虫框架及工具,具有网络爬取相关实践经验者优先·了解R语音并能够将部分R脚本翻译成python脚本者优先

    二、Python爬虫工程师·熟悉Linux系统,掌握Python等语·掌握网页抓取原理及技术,了解基于Cookie的登录原理,熟悉基于正则表达式、XPath、CSS等网页信息抽取技术·熟悉整个爬虫的设计及实现流程,有从事网络爬虫、网页信息抽取开发经验,熟悉反爬虫技术,有分布式爬虫架构经验·具有数据挖掘、自然语言处理、信息检索、机器学习背景者优先·熟悉ElasticSearch、Hadoop/Mysql,有多语言开发经验者优先

    三、Linux运维工程师·熟悉shell,能编写日常脚本,熟悉perl或python者优先·掌握Linux系统下常用服务架设与维护·熟悉常用的高可用软件,如LVS,heartbeat,keepalived等·熟悉mysql的安装、优化,能够实现mysql的高性能和高可用·熟悉nagios、cacti、zabbix等常用监控软件还希望广大学员对学习Python大数据将来能从事什么岗位这一问题多做了解,为自己将来的就业早做准备。
      人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
    大数据工程师培训,需要学习的有哪些课程?
    http://www.duozhishidai.com/article-15081-1.html
    大数据工程师就业培训哪个好?
    http://www.duozhishidai.com/article-15082-1.html
    java大数据与python大数据如何选择?
    http://www.duozhishidai.com/article-12540-1.html


    多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

    多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台
    展开全文
  • 学习量化交易推荐学习国内关于Python大数据与量化交易的原创图书《零起点Python大数据与量化交易》。 配合zwPython开发平台和zwQuant开源量化软件学习,是一套完整的大数据分析、量化交易的学习教材,可直接用于实盘...

    学习量化交易推荐学习国内关于Python大数据与量化交易的原创图书《零起点Python大数据与量化交易》。

    配合zwPython开发平台和zwQuant开源量化软件学习,是一套完整的大数据分析、量化交易的学习教材,可直接用于实盘交易。有三大特色:第一,以实盘个案分析为主,全程配有Python代码;第二,包含大量的图文案例和Python源码,无须专业编程基础,懂Excel即可开始学习;第三,配有专业的zwPython集成开发平台、zwQuant量化软件和zwDat数据包。

    学习推荐:

    《零起点Python大数据与量化交易》中文PDF,带目录,655页,文字可以复制。配套源代码。

    网盘下载:http://106.13.73.98/abc/213

    1499715-20190604164224438-1838358245.png

    转载于:https://www.cnblogs.com/zyk01/p/10978455.html

    展开全文
  • 大数据是目前互联网流行的技术语言,处理大数据编程语言比较有优势的也很多,比如java、python、go、R语言、Hadoop等等,按道理来说每种编程语言都可以处理大数据,只是处理的规模不一样而且,但是现在比较受欢迎...
  • 零起点Python大数据与量化交易高清pdf,带书签完整版,高质量。 《零起点Python大数据与量化交易》是国内较早关于Python大数据与量化交易的原创图书,配合zwPython开发平台和zwQuant开源量化软件学习,是一套完整的...
  • 本课程整合了Python大数据+人工智能,从底层原理, 到上层应用从编程思想, 到案例实践梯度式学习。 课程简介: Python-Python大数据+人工智能 学科视频教程(1) 01-Python大数据+人工智能-学前阶段 01-Python大纲 ...
  • Java和Python编程语言,而大数据则是一系列技术的整合,所以应该分开来看,三者并不能直接进行对比。 三者实际的关系是目标和实现的包含关系。所以这个问题应该分别为 Java和Python哪个发展前景好?大数据的发展...
  • 机器学习、深度学习算法原理与案例实现暨Python大数据综合应用高级研修班一、课程简介课程强调动手操作;内容以代码落地为主,以理论讲解为根,以公式推导为辅。共4天8节,讲解机器学习和深度学习的模型理论和代码...
  • ☞☞☞点击查看更多优秀Python博客☜☜☜  Hello大家好,我是你们的朋友JamesBin上篇文章Python...大数据方向什么是大数据大数据学习大纲获取大数据数据分析学习路线第一步:了解大数据的基本概念第二步:学...
  • Python大数据可视化

    2020-03-11 14:42:08
    本课程通过一系列内容讲解和编码实战,按照由易到难,由浅入深的顺序展开,让学员在实践中,对大数据可视化工具Echarts有一个全方位的认知,实现数据可视化从零到入门。
  • 继Java、H5前端之后,大数据学习路线图、Python学习路线图也来了! 学习路线图 2018年,大数据Python人工智能刷了全球的屏:高薪就业、人才被抢的新闻报道频频刷屏。从技术突破到商业应用落地再到国家政策...
  • 二、使用python脚本程序将目标excel文件中的列头写入,本文省略该部分的code展示,可自行网上查询 三、以下code内容为:实现从接口获取到的数据值写入excel的整体步骤 1、整体思路: (1)、根据每日调取接口的...
  • 大数据发展前景及薪资状况随着5G的到来移动互联网、物联网得到高速发展,同时也产生了海量的数据,大数据计算技术完美地解决了海量数据的收集、存储、计算、分析等问题。大数据...
  • Java和Python编程语言,而大数据则是一系列技术的整合,所以应该分开来看,三者并不能直接进行对比。 三者实际的关系是目标和实现的包含关系。所以这个问题应该分别为 Java和Python哪个发展前景好?大数据的...
  • 日前,人力资源和社会保障部等三部门也正式发布了人工智能工程技术人员、物联网工程技术人员、大数据工程技术人员等13个新职业信息,这也是自2015年版国家职业分类大典颁布以来...
  • 如果说2018年以前R是数据学术界的主流,那么2018年以后Python正在慢慢取代R在学术界的地位。 Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据才能...
  • 之前有人说过JAVA语言是最适合做数据分析的计算机编程语言之一,在这里,我想说其实Python大数据也是大数据分析最受欢迎的编程语言。  Python是一个强大的,灵活的,开放的,易于学习的源语言,使用方便,并具有...
1 2 3 4 5 ... 20
收藏数 50,092
精华内容 20,036