大数据配对软件_登录页面怎么调用数据库数据配对账号密码 - CSDN
  • 大数据软件配置

    2016-12-27 21:57:40
    最近在做大数据的东西,配置了下虚拟机和在centos下安装软件,中间出了点错误,在此备忘。 1.安装vmware 我就直接在搜狗浏览器中搜索了一下,我下的是12版的。地址:...

    最近在做大数据的东西,配置了下虚拟机和在centos下安装软件,中间出了点错误,在此备忘。


    1.安装vmware

    我就直接在搜狗浏览器中搜索了一下,我下的是12版的。地址:http://xiazai.sogou.com/detail/34/13/3543595921374893595.html?e=1970

    安装是参照百度经验。注册码:VF58R-28D9P-0882Z-5GX7G-NPUTF


    2.安装centos

    下载:我是在csdn里下载的,真的这个网站给了我很多有用的东西

    安装:参照百度经验:http://jingyan.baidu.com/article/eae0782787b4c01fec548535.html


    3.在虚拟机里安装完 centos系统之后出现了一个问题--centos不能上网,之后又是一顿百度经验,哎!百度真是神啊,我一定的去看看。

    解决上网问题:https://www.sogou.com/link?url=DSOYnZeCC_pxawEajgqi9Pn9zWa1yw1ROHdl-hdEkGA.&query=vmware+centos7%E8%BF%9E%E6%8E%A5%E7%BD%91%E7%BB%9C


    4.之后我又在centos上安装了nodejs,这回可蒙了,这是自己第一次接触到linux系统,幸亏自己以前弄过vim,可是还是有点蒙。

    我是参考菜鸟教程上讲的安得,可是需要注意的是,你事先得先安装好gcc,在终端输入:gcc  -v   ,测试你是否安装,没安装的话输入:yum -y installgcc

     之后便可按照菜鸟教程上所说的做。


    5.最后我安装了redis,读者可按照菜鸟教程上的步骤进行安装。

    展开全文
  • 工业大数据介绍

    2019-03-11 13:09:49
    一、工业大数据的定义 工业大数据是指在工业领域,主要通过传感器等物联网技术进行数据采集、传输得来的数据,由于数据量巨大,传统的信息技术已无法对相应的数据进行处理、分析、展示,而在传统工业信息化技术的...

    一、工业大数据的定义
    工业大数据是指在工业领域,主要通过传感器等物联网技术进行数据采集、传输得来的数据,由于数据量巨大,传统的信息技术已无法对相应的数据进行处理、分析、展示,而在传统工业信息化技术的基础上借鉴了互联网大数据的技术,提出新型的基于数据驱动的工业信息化技术及其应用。

    二、工业大数据特点
    工业大数据主要有以下几个特点:
    1、数据来源主要是企业内部,而非互联网个人用户;
    2、数据采集方式更多依赖传感器而非用户录入数据;
    3、数据服务对象是企业,而不是个人;
    4、在技术上,传统的企业架构技术已无法提供相应的分析应用,更多的采用了互联网大数据领域成熟的技术;
    5、改变了企业原先对数据的看法,使得原先看似无用的、直接丢弃的数据重新得到了重视,并且切实改进了企业的生产、销售、服务等过程;

    三、大数据在工业领域的作用
    1、实现数据的全面采集并持久化
    在前大数据时代,很多工业现场采集到的数据的生命周期仅仅是在显示屏上一闪而过,大量的数据由于种种原因被丢弃了,丢弃的一个很重要的原因就是无法有效存储,全部存储成本过高且数据量过大导致无法使用。大数据时代之后,新型的数据处理技术及云计算带来的低成本,使得数据的全面采集并且持久化成为可能,即采集到的数据可以实现长时间的存储,且海量的数据可处理、可分析,工业用户就有了存储数据的意愿。而这一切又反过来为大数据分析提供了坚实的数据基础,使得分析的结果更准确,成为一种正向循环。
    2、实现全生产过程的信息透明化
    随着现代生产技术的飞速提高,生产过程已经呈现高度复杂性和动态性,逐渐出现了不可控性。生产过程信息呈现碎片化倾向,只有专业部门、专业人员才掌握本部门、本专业的数据,企业无法全面有效了解全生产流程。
    随着大数据处理和可视化技术的不断发展,目前,通过全生产过程的信息高度集成化和数据可视化,从而达到了生产过程的信息透明化,企业总调度中心不仅可以清晰地识别产品,定位产品,而且还可全面掌握产品的生产经过、实际状态以及至目标状态的可选路径。
    3、实现生产设备的故障诊断和故障预测
    当前,已经可实现对设备各类数据的采集,包括设备运行的状态参数,例如温度、震动等,设备运行的工况数据,例如负载、转速、能耗等,设备使用过程中的环境参数,例如风速、气压等,设备的维护保养记录,包括检查、维护、维修、保养等信息,以及设备的使用情况,例如使用单位、操作人员等。收集到设备的各类数据后,再加上同类设备的数据、长周期的使用数据等等,就构成了大数据分析的基础数据。
    这个时候,再加上好的算法及模型,通过数据的分析处理实现设备的故障诊断和故障预测就是一个再简单不过的事情了。
    4、实现生产设备的优化运行
    在故障诊断和故障预测的基础上,机器、数据和生产指标构成了一个相互交织的网络,通过信息的实时交互、调整,再加上优化准则,将它们进行比对、评估,最终选出最佳方案。可以进一步提高设备的效率和精度,更加合理化和智能化的使用设备,这就使生产更具效率,更环保,更加人性化。并且设备的使用更加高效、节能、持久,同时还可减少运维环节中的浪费和成本,提高设备的可用率。
    5、提高企业的安全水平
    由于设备信息、环境信息和人员信息的高度集成,经过数据分析可实现安全报警、预警,隐患评估、预警等,从而大幅度提高安全水平,并且可提升人员效率;
    6、实现定制化生产
    近几十年里,技术开发面临的最大挑战是产品乃至系统无限增加的复杂性。与此同时,这还导致开发和制造的工业过程的复杂性也倾向于无限增加。而工业企业欲在未来长期保持竞争优势,又必须提高生产灵活性。因为只有这样,才能降低成本,缩短产品上市时间,并通过提高产品的种类,满足个性化的生产需求。
    单靠人脑进行管理,是无法对如此复杂的流程和庞大的数据进行匹配的,通过大数据技术的引入,可以将客户的需求直接反映到生产系统中,并且由系统智能化排程,安排组织生产,使得企业定制化生产成为现实;
    7、实现供应链的优化配置
    通过RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
    供应链体系以市场链为纽带,以订单信息流为中心,带动物流和资金流的运动,整合供应链资源和用户资源。在供应链的各个环节,客户数据、企业内部数据、供应商数据被汇总到供应链体系中,通过供应链上的大数据采集和分析,企业就能够持续进行供应链改进和优化,保证了对客户的敏捷响应。
    8、实现产品的持续跟踪服务
    随着物联网技术的发展,对于已售出的产品,现在可实现运行数据的全面收集,从而可分析已售出产品的安全性、可靠性、故障状态、使用情况等,在这些数据的基础上,产品运行数据可以直接转化到生产过程中,可以改进生产流程、提高产品质量、开发新产品,更进一步,生产信息也可以直接作用于优化产品研发及生产过程的上游工序中。
    9、为企业提升新的服务价值
    商家卖的是产品,用户看重的是产品带来的价值。一切技术或产品都只是手段,其核心目的是在使用中创造价值。当企业能够使用新的技术为用户提供服务时,卖的已经不是或者不只是冰冷的产品了,而是新的价值服务。这样,一个生产商就从过去单纯的产品提供者转变为如今的信息服务商。

    四、工业大数据案例
    1、实现全生产过程的信息透明化的案例
    通过采用集成自动化与驱动解决方案,能够显著提高生产效率和灵活性。原东德玻璃制造商f | glass就是一个很好的实例。它的工厂可以算得上是全世界最先进、最节能的工厂之一了。该工厂采用了一套集成自动化解决方案、一个先进的能源管理系统以及一个创新的热回收系统。从原材料供应和混合,到熔化过程,再到玻璃表面的精加工和调试,生产与物流均完全实现了自动化。通过全集成自动化(TIA),所有集成仪表、驱动、自动化及配电解决方案相互协同,所有生产流程高效而灵活。过程控制系统Simatic PCS 7可视化控制着700米长设备上的3000个测量点,实现了一年365天连续可靠的运行。
    2、实现生产设备的故障诊断和故障预测的案例
    某世界500强的生活消费公司每年在纸尿裤市场占据超过100亿美元的市场份额,在纸尿裤的生产过程中曾经遇到过令人十分头痛的问题:在完成纸尿裤生产线从原材料到成品的全自动一体化升级后,生产线的生产速度得到了大幅提升,每秒钟能够生产近百米的纸尿裤成品。然而新的生产线建成后一直没有办法发挥最大的产能,因为在高速生产过程中某一个工序一旦出现错误,生产线会进行报警并造成整条生产线的停机,随后由现场的工人将生产错误的部分切除后再重新让生产线运转,这样做的原因是一旦某一片纸尿裤的生产发生问题会使随后的所有产品都受到影响,因此不得不将残次部分剔除后重新开机。
    为了提升生产线的生产效率,这家公司与IMS合作对纸尿裤生产线的监控和控制系统进行了升级。我们首先从控制器中采集了每一个工序的控制信号和状态监控参数,从这些信号中寻找出现生产偏差时的数据特征,并利用数据挖掘的分析方法找到正常生产状态和偏差生产状态下的序列特征。随后用机器学习的方法记录下这些特征,建立判断生产状态正常和异常的健康评估模型。在利用历史数据进行模型评价的过程中。该健康模型能够识别出所有生产异常的样本并用0—1之间的数字作为当前状态即时动态监控拇标。于是在生产过程中的每一个纸尿裤都会被赋予1个0—1的健康值,当系统识别出某一个纸尿裤的生产出现异常时,生产系统将在维持原有生产速度的状态下自动将这一产品从生产线上分离出来,且不会影响到其他产品的生产和整条生产线的运转。
    这项技术后来被纸尿裤生产公司集成到了控制器当中,升级后的生产线实现了近乎于零的停机时间,也使生产线实现了无人化操作,每年由于生产效率提升所带来的直接经济价值就高达4. 5亿美元。
    3、实现生产设备的优化运行的案例
    (1)高圣是一家生产带锯机床的中国台湾公司,所生产的带锯机床产品主要用于对金属物料的粗加工切削,为接下来的精加工做准备。机床的核心部件是用来进行切削的带锯,在加工过程中带锯会随着切削体积的增加而逐渐磨损,将会造成加工效率和质量的下降,在磨损到一定程度之后就要进行更换。使用带锯机床的客户工厂往往要管理上百台的机床,需要大量的工人时刻检查机床的加工状态和带锯的磨损情况,根据经验判断更换带锯的时间。带锯寿命的管理具有很大的不确定性,加工参数、工件材料、工件形状、润滑情况等一系列原因都会对带锯的磨耗速度产生影响,因此很难利用经验去预测带锯的使用寿命。切削质量也受到许多因素的影响,除了材料与加工参数的合理匹配之外,带锯的磨耗也是影响切削质量的重要因素。由于不同的加工任务对质量的要求不同,且对质量的影响要素无法实现透明化,因此在使用过程中会保守地提前终止使用依然健康的带锯。
    因此高圣意识到,客户所需要的并不是机床,而是机床所带来的切削能力,其核心是使用最少的费用实现最优的切削质量。于是高圣开始从机床的PLC控制器和外部传感器收集加工过程中的数据,并开发了带锯寿命衰退分析与预测算法模块,实现了带锯机床的智能化升级,为客户提供机床生产力管理服务。
    在加工过程中,智能带锯机床能够对产生的数据进行实时分析:首先识别当前的工件信息和工况参数,随后对振动信号和监控参数进行健康特征提取,依据工况状态对健康特征进行归一化处理后,将当前的健康特征映射到代表当前健康阶段的特征地图上的相应区域,就能够将带锯的磨损状态进行量化和透明化。分析后的信息随后被存储到数据库内建立带锯使用的全生命信息档案,这些信息被分为三类:工况类信息,记录工件信息和加工参数;特征类信息,记录从振动信号和控制器监控参数里提取的表征健康状态的特征值;状态类信息,记录分析的健康状态结果、故障模式和质量参数。大量带锯的全生命信息档案形成了一个庞大的数据库,可以使用大数据分析的方法对其进行数据挖掘,例如通过数据挖掘找到健康特征、工艺参数和加工质量之间的关系,建立不同健康状态下的动态最佳工艺参数模型,在保障加工质量的前提下延长带锯使用的寿命。
    在实现锯机床“自省性”智能化升级的同时,高圣开发了智慧云服务平台为用户提供“定”制化的机床健康与生产力管理服务,机床采集的状态信息被传到云端进行分析后,机床各个关键部件的健康状态、带锯衰退情况、加工参数匹配性和质量风险等信息都可以通过手机或PC端的用户界面获得,每一个机床的运行状态都变得透明化。用户还可以用这个平台管理自己的生产计划,根据生产任务的不同要求匹配适合的机床和能够达到要求的带锯,当带锯磨损到无法满足加工质量要求时,系统会自动提醒用户去更换据带,并从物料管理系统中自动补充一个带锯的订单。于是用户的人力的使用效率得到了巨大提升,并且避免了凭借人的经验进行管理带来的不确定性。带锯的使用寿命也得以提升,同时质量也被定量化和透明化地管理了起来。
    高圣的智慧带锯机床和智能云服务在2014年的芝加哥国际机床技术展(IMTS)上推出后赢得强烈反响,被认为是智能化设备的杰出示范,赢得了广大客户的欢迎和青睐。

    (2)位于德国安贝格的西门子工厂即是一个很好的实例,该工厂负责生产Simatic系列PLC(可编程逻辑控制器Programmable LogicController)。大部分生产都实现了数字化,并独立于实际生产进行了仿真和优化。通过采用Simatic IT 制造执行系统,显著提高了生产效率和灵活性。该Simatic系统允许在一分钟之内更改产品和工序,这对于自动化系统来说卫是一个很大的挑战:另外,每天大约有一百多万个测量事件,不断地涌入中央系统。通过数据矩阵码扫描器和RFID芯片,采集产品信息,并加载到上位中央系统,以确保数据的一致性。这样,控制系统就可以掌握每一件产品的信息,例如产品当前状态、是否通过检验等。若该产品未能通过检验,控制系统将对其按照原有程序进行干涉,如:自动发送一封邮件到品控部门,为技术人员提供维护信息等。品控部门的员工将会收到一份内容包含装配计划和故障诊断的信息清单。正是因为应用了这一技术,使得西门子公司的这家工厂几乎成为了误差最小的工厂。其误差比率之低,十分惊人:百万缺陷率仅15,相当于工厂产品合格率为99. 9985 %。
    (3)大众汽车改造一条已经使用了17年之久的冲压生产线时,将产品生命周期管理软件(PLM)与其自动化软件相结合,使得改造时间有了明显的减少:在早起改造生产线的规划阶段,为提高生产效率,可以使用冲压线仿真软件,模拟出现有机器和处理设备,再对其进行优化。为了将冲压件的模拟程序做到最精确,在使用仿真软件的时候,还需要配合使用运动控制软件(Motion Control Software)。运动控制软件除可用于虚拟环境外,还可用于现实操作中。使用这种技术,在完成最后冲压线改造工程之后,经计算实现节能35 %,每分钟冲程数可由14次提高至16次,生产力明显提高。虽然表面上看,这2个冲程数并不起眼,但放在每个班次上所提升的效率是相当可观的。
    4、实现定制化生产的案例
    2014年,红领以零库存实现150%的业绩增长,以大规模定制生产每天完成2000种完全不同的个性化定制产品;公司的核心竞争力是一套大数据信息系统,任何一项数据的变动都能驱动其余9000多项数据的同步变动,真正做到了从用户的个性化设计订单到生产过程的“零时差”连接。
    红领走了一条极端的定制路线,生产的每一件衣服从生成订单前就已经销售出去,并且每一件衣服都是由用户亲自完成的设计。这在成本上只比批量制造高10%,但收益却能达到两倍以上。实现低成本、高定制化生产的背后是一套完整的大数据信息系统,任何一个用户一周内就能够拿到定制的衣服,而传统模式下却需要3一6个月。
    定制的第一步是用户数据的采集,最重要的数据是用户的量体。量体数据采集的方案主要有四套:第一套方案,用户可以根据以往在任何一个大品牌服装上体验的自认为最合适据,从红领的数据库中自动匹配对应的量体数据;第二套方案,通过O2O平台,在任何地点预约上门量体;第三套方案,用户可以到红领的体验店直接采集量体数据,整个过程只需要5分钟,采集19个部位的数据;第四套方案,用户也可以选择自己的标准号,但是要对自己的选择负责。完成用户的数据采集之后,红领就会形成一个用户的数据档案,在未来用户进行新的定制化设计时可以直接使用以前的数据。
    除了量体数据的定制化,最大程度满足西装的合身之外,客户还可以定制衣服的面料、图案、光泽、颜色,甚至是一些极其微小的细节。比如纽扣的形状和排列方式、口袋的样式、里衬的走线纹路,甚至是添加一个水滴形的钢笔口袋,或是印上自己家族的徽章和名字。即使是在如此复杂和高度定制化的情况下,依然可以确保在7天内为用户完成制作并发货。这其中的秘诀依然离不开数据:当客户在网上完成下单之后,这些定制化的设计被转变成数以万计的生产指令数据,并按照工序被记录在数十个磁卡中,形成了一件衣服在制作过程中的“身份证”。
    一件定制化西服的生产流程可以简单描述为:工厂的订单信息全程由数据驱动,在信息化处理过程中没有人员参与,无须人工转换与纸质传递,数据完全打通,实时共享传输。所有员工在各自的岗位上接受指令,依照指令进行定制生产,员工真正实现了“在线”工作而非“在岗”工作。当一件正在制作中的西服到达一个工人面前时,员工可以从互联网云端获取这件西服的制作指令数据,按客户的要求操作,确保了来自全球订单的数据传递零时差、零失误率,用互联网技术实现客户个性化需求与规模化生产制造的无缝对接。
    在生产线的智能化升级方面,基于MES , WMS , APS等系统的实施,通过信息的读取与交互,与自动化设备相结合,促进制造自动化,流程智能化。通过AGV小车、智能分拣配对系统、智能吊挂系统与智能分拣送料系统的导入,加快整个制造流程的物料循环,通过智能摘挂系统、线号识别系统、智能取料系统、智能对格裁剪等系统的导入实现整个制造流程的自动化。除此之外,红领还利用大数据分析解决生产线平衡和瓶颈问题,使之达到产能最大化、排程最优化及库存和成本的最小化。
    红领经过10多年的数据累积,建立了个性化产品数据模型以及数据累积管理模型,基于数据模型完善大数据,目前具有千万种服装版型,数万种设计元素,满足用户个性化定制需求,组合出无限的定制可能,目前能满足近100%的个性化设计需求。红领在产品设计方面采用了与传统服装行业不同的三维计算机辅助设计(CAD)、计算机辅助工艺规划(CAPP)方式,对款式、尺码以及颜色等都进行智能化管理。红领使用大数据技术的最核心价值就是对C2M各生态链上的海量数据进行收集、存储和分析,构建了以下5个方面的核心能力:
    规模化:将软件、硬件设备资源进行规模化集成,提升设备的计算能力;
    可靠性:用分布式数据中心的存储和备份,保证了数据的容灾性;
    虚拟化:将软、硬件相互隔离,虚拟化应用,减少了设备之间的依赖性;
    按需服务:建立云端的虚拟资源池,为各模块提供弹性支撑服务;
    通用性:不用针对具体的应用,在“云”的支撑下可构造不同的应用。
    正是有了这样的一套大数据驱动的生产系统,红领员工才发出这样的感慨:现在人人都是设计师,每一件西服都是一个故事,从衣服上可以猜测它背后是什么样的人来穿,甚至以什么样的心情来穿。
    5、实现产品的持续跟踪服务的案例
    (1)1987年,美国通用汽车(General Motors)收购了了休斯电气公司(Hughes ElectronicsCorporation),应用各自领域的专业技术优势和经验在1992年开发出了OnStarTM(国内称为“安吉星”)系统。安吉星最初的功能主要是远程监控和危机处理,比如当用户丢失车钥匙时帮助他们远程打开车门、汽车发生问题时进行远程诊断筛选,以及汽车在发生碰撞后提供紧急救援服务。这也是汽车领域利用远程数据采集为用户提供服务的第一次尝试。
    (2)另一个代表是GE Medical Systems (GE Healthcare的前身)推出的InSite设备网管系统,能够通过无线系统网络对GE的医疗泛备(如核磁共振仪等)进行点对点监控。在InSite推出以前,医疗设备在故障后需要联络现场工程师到现场处理,从派遣工程师到维修完毕的平均时间为4个小时,故障后常常造成顾客长时间等待和抱怨。InSite系统可以直接对设备进行远程监控,发生故障时远程帮助用户及时找出问题并自行解决,减少了不必要的到点维修。如果客户无法自行解决,也可以在远程对设备的故障进行较为详细的诊断,在到点维修前提示准备好所需的资源和备件。使用InSite系统后,41%的故障可以远程排除,平均消耗时间仅为15分钟,而34%的故降可以进行远程诊断和到点维修准备,平均故障排除时间降低到了2小时。在InSite的帮助下,GE大幅削减了售后服务的成本,而且将设备的停机率缩短至小于1天/年。这个概念也激发了GE为航空发动机开发On-wing SupportTM服务的灵感,为GE第二代远程大数据服务系统打下了基础。
    (3)还有一个代表产品是奥蒂斯(OTIS)电梯公司的远程电梯维护系统(Remote ElevatorMaintenance,REMTM)早在1995年就利用监控数据对电梯进行远程维护。那个时候电梯最大的问题就是经常打不开门,把乘客关在一了电梯里,而维修人员赶到现场进行故障排除需要1个小时左右的时间。为了避免故障的发生,OTIS有一个庞大的维护人员团队,对每个城市的高层OTIS电梯进行定期的巡检,带来了高昂的人力成本。于是OTIS通过REMTM监控每一台电梯的平均开门时间和电气设备的重要参数,判断电梯发生故障的风险,为维护团队提供巡检的优先级排序和预防性维护决策支持,在承担较低的人力成本条件下最大限度地避免了电梯故障。
    (4)小松机械(Komatsu)在2005年推出了康查士(KomtraxTM系统),利用ICT技术对车辆进行远程使用管理,将设备的使用数据和各种健康信息及时反馈给客户,帮助客户做好日常保养工作,使设备保持良好的状态。该系统还可以对用户的使用工况进行判断,例如当挖掘机设备在土质松软的海边工作时,由于设备自身无法固定而牢固,常常需要在超负荷的工况下运行,康查士系统就可以提醒用户在该工况下的使用风险,并给出相应的维护建议。小松曾派工程师于2005~2006年到美国的IMS中心合作开发智能维护分析工具,对远程装备管理提供信息服务。
    (5)阿尔斯通(Alstom)的TrackTracerTM车载诊断系统能够在高铁运行时监控车辆关键部件的健康状况,一旦发现现异常,TrackTracerTM就可以对故障进行远程诊断,并派遣维护人员在车辆的下一个站点进行维修,从而最大限度地保障列车的运行率。TrackTracerTM还可以通过车载的振动传感器对铁轨进行监控,避免了以往人工检查的低效和安全隐患。
    6、为企业提升新的服务价值的案例
    GE旗下的飞机发动机公司(GE Aircraft Engine)在2005年将公司名称改为“GE航空”(GE Aviation),这代表着业务模式的转型。原来的发动机公司只做发动机,而改名后的GE航空则提供运维管理、能力保障、运营优化和财务计划的整套解决方案,还可以提供安全控件、航管控件、排程优化、飞航信息预测等各类服务,由服务带来的价值空间更大了。
    例如,GE航空提供的“On-Wing Support”服务,在航班飞行的过程中监控发动机的健康状态,对可能发生的故障风险进行预测,在飞机落地前就可以在相应的机场准备好维护所需的备件和技师等资源,从而使发动机的使用率大大提升,同时安全性也得到了很好的保障。这项服务推出后,从美国芝加哥飞往上海的航班降落后仅需3小时的周转时间就可以搭载上海的乘客返回芝加哥,航班的周转率大大提升,为航空公司带来了相当可观的价值增长。有了这些服务之后,GE卖的已经不是或者不只是发动机,而是航空管理服务。这样,发动机生产商从过去单纯的发动装置提供者转变为如今的航运信息管理服务商。

    展开全文
  • 大数据在很多的领域中都有应用,而且大数据所涉及到的领域都有不同程度的进步和发展,这是一个值得欣慰的事情,当然也正是这个原因,很多的行业都争先恐后地使用大数据技术。当然,电子商务也不例外,在这篇文章中...


    大数据在很多的领域中都有应用,而且大数据所涉及到的领域都有不同程度的进步和发展,这是一个值得欣慰的事情,当然也正是这个原因,很多的行业都争先恐后地使用大数据技术。当然,电子商务也不例外,在这篇文章中我们就给大家介绍一下电子商务领域使用大数据的思维方式,希望这篇文章能够帮助大家理解大数据在电子商务中的应用。

    电子商务有了大数据技术的加持,于是摇身一变成为电子智能商务,而电子商务智能的原理就是大数据改变了电子商务模式,让电子商务更智能。商务智能,大数据时代重新获得定义。而现在,传统企业进入互联网,如果掌握了“大数据”技术应用途径之后,就会发现有一种豁然开朗的感觉,这些能够给我们带来很多的体验。而大数据时代不是说我们这个时代除了大数据什么都没有,哪怕是在互联网和IT领域,它也不是一切,只是说在我们的时代特征里面这一个特殊的属性,从而导致我们对以前的生存状态,以及我们个人的生活状态的一个差异化的一种表达。

    当然,如果软件有了大数据,那么这个软件就会更加智能,虽然说,我们仍处于大数据时代来临的前夕,但我们的日常生活已经离不开它了。交友网站根据个人的性格与之前成功配对的情侣之间的关联来进行新的配对。具有自我修正功能的智能手机通过分析我们以前的输入,将个性化的新单词添加到手机词典里。在不久的将来,世界许多现在单纯依靠人类判断力的领域都会被计算机系统所改变甚至取代。计算机系统可以发挥作用的领域还有更多的方向,不只是我们认为的交友与娱乐。

    如果大数据能够运用到疾病诊断、推荐治疗措施,甚至是识别潜在犯罪分子上,这样就能够造福人类。这就像互联网通过给计算机添加通信功能而改变了世界,大数据也将改变我们生活中最重要的方面,因为它为我们的生活创造了前所未有的可量化的维度。用电子商务更智能的思维方式思考问题,解决问题。大家都知道,人脑思维与机器思维有很大差别,但机器思维在速度上是取胜的,而且智能软件在很多领域已能代替人脑思维的操作工作。人们需要的所有信息都可得到显现,而且每个人互联网行为都可记录,这些记录的大数据经过云计算处理能产生深层次信息,经过大数据软件挖掘,企业需要的商务信息都能实时提供,为企业决策和营销、定制产品等提供了大数据支持。

    关于大数据加持的电子商务的具体情况我们就给大家讲解到这里了,通过这篇文章相信大家对大数据应用于电子商务有了一定的了解。其实我们可以发现,大数据是一个十分有用的技术,同时也正因为各个领域的使用而进步,而这些领域也因为应用大数据而获得了发展,这就形成了双赢。

    展开全文
  • 大数据时代,计算模式也发生了转变,从“流程”核心转变为“数据”核心。hadoop体系的分布式计算框架已经是“数据”为核心的范式。非结构化数据及分析需求,将改变IT系统的升级方式:从简单增量到架构变化。大数据下...

    一、数据核心原理——从“流程”核心转变为“数据”核心

    大数据时代,计算模式也发生了转变,从“流程”核心转变为“数据”核心。hadoop体系的分布式计算框架已经是“数据”为核心的范式。非结构化数据及分析需求,将改变IT系统的升级方式:从简单增量到架构变化。大数据下的新思维——计算模式的转变。

    例如:IBM将使用以数据为中心的设计,目的是降低在超级计算机之间进行大量数据交换的必要性。大数据下,云计算找到了破茧重生的机会,在存储和计算上都体现了数据为核心的理念。大数据和云计算的关系:云计算为大数据提供了有力的工具和途径,大数据为云计算提供了很有价值的用武之地。而大数据比云计算更为落地,可有效利用已大量建设的云计算资源,最后加以利用。

    科学进步越来越多地由数据来推动,海量数据给数据分析既带来了机遇,也构成了新的挑战。大数据往往是利用众多技术和方法,综合源自多个渠道、不同时间的信息而获得的。为了应对大数据带来的挑战,我们需要新的统计思路和计算方法。

    说明:用数据核心思维方式思考问题,解决问题。以数据为核心,反映了当下IT产业的变革,数据成为人工智能的基础,也成为智能化的基础,数据比流程更重要,数据库、记录数据库,都可开发出深层次信息。云计算机可以从数据库、记录数据库中搜索出你是谁,你需要什么,从而推荐给你需要的信息。

    二、数据价值原理——由功能是价值转变为数据是价值

    大数据真正有意思的是数据变得在线了,这个恰恰是互联网的特点。非互联网时期的产品,功能一定是它的价值,今天互联网的产品,数据一定是它的价值。

    例如:大数据的真正价值在于创造,在于填补无数个还未实现过的空白。有人把数据比喻为蕴藏能量的煤矿,煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”,价值含量、挖掘成本比数量更为重要。不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。

    数据能告诉我们,每一个客户的消费倾向,他们想要什么,喜欢什么,每个人的需求有哪些区别,哪些又可以被集合到一起来进行分类。大数据是数据数量上的增加,以至于我们能够实现从量变到质变的过程。举例来说,这里有一张照片,照片里的人在骑马,这张照片每一分钟,每一秒都要拍一张,但随着处理速度越来越快,从1分钟一张到1秒钟1张,突然到1秒钟10张后,就产生了电影。当数量的增长实现质变时,就从照片变成了一部电影。在此我向大家推荐一个大数据技术交流圈: 658558542  突破技术瓶颈,提升思维能力 。

    说明:用数据价值思维方式思考问题,解决问题。信息总量的变化导致了信息形态的变化,量变引发了质变,最先经历信息爆炸的学科,如天文学和基因学,创造出了“大数据”这个概念。如今,这个概念几乎应用到了所有人类致力于发展的领域中。从功能为价值转变为数据为价值,说明数据和大数据的价值在扩大,数据为“王”的时代出现了。数据被解释是信息,信息常识化是知识,所以说数据解释、数据分析能产生价值。

    三、全样本原理——从抽样转变为需要全部数据样本

    需要全部数据样本而不是抽样,你不知道的事情比你知道的事情更重要,但如果现在数据足够多,它会让人能够看得见、摸得着规律。数据这么大、这么多,所以人们觉得有足够的能力把握未来,对不确定状态的一种判断,从而做出自己的决定。这些东西我们听起来都是非常原始的,但是实际上背后的思维方式,和我们今天所讲的大数据是非常像的。

    举例:在大数据时代,无论是商家还是信息的搜集者,会比我们自己更知道你可能会想干什么。现在的数据还没有被真正挖掘,如果真正挖掘的话,通过信用卡消费的记录,可以成功预测未来5年内的情况。统计学里头最基本的一个概念就是,全部样本才能找出规律。为什么能够找出行为规律?一个更深层的概念是人和人是一样的,如果是一个人特例出来,可能很有个性,但当人口样本数量足够大时,就会发现其实每个人都是一模一样的。

    说明:用全数据样本思维方式思考问题,解决问题。从抽样中得到的结论总是有水分的,而全部样本中得到的结论水分就很少,大数据越大,真实性也就越大,因为大数据包含了全部的信息。

    四、关注效率原理——由关注精确度转变为关注效率

    关注效率而不是精确度,大数据标志着人类在寻求量化和认识世界的道路上前进了一大步,过去不可计量、存储、分析和共享的很多东西都被数据化了,拥有大量的数据和更多不那么精确的数据为我们理解世界打开了一扇新的大门。大数据能提高生产效率和销售效率,原因是大数据能够让我们知道市场的需要,人的消费需要。大数据让企业的决策更科学,由关注精确度转变为关注效率的提高,大数据分析能提高企业的效率。

    例如:在互联网大数据时代,企业产品迭代的速度在加快。三星、小米手机制造商半年就推出一代新智能手机。利用互联网、大数据提高企业效率的趋势下,快速就是效率、预测就是效率、预见就是效率、变革就是效率、创新就是效率、应用就是效率。

    竞争是企业的动力,而效率是企业的生命,效率低与效率高是衡量企来成败的关键。一般来讲,投入与产出比是效率,追求高效率也就是追求高价值。手工、机器、自动机器、智能机器之间效率是不同的,智能机器效率更高,已能代替人的思维劳动。智能机器核心是大数据制动,而大数据制动的速度更快。在快速变化的市场,快速预测、快速决策、快速创新、快速定制、快速生产、快速上市成为企业行动的准则,也就是说,速度就是价值,效率就是价值,而这一切离不开大数据思维。

    说明:用关注效率思维方式思考问题,解决问题。大数据思维有点像混沌思维,确定与不确定交织在一起,过去那种一元思维结果,已被二元思维结果取代。过去寻求精确度,现在寻求高效率;过去寻求因果性,现在寻求相关性;过去寻找确定性,现在寻找概率性,对不精确的数据结果已能容忍。只要大数据分析指出可能性,就会有相应的结果,从而为企业快速决策、快速动作、创占先机提高了效率。

    五、关注相关性原理——由因果关系转变为关注相关性

    关注相关性而不是因果关系,社会需要放弃它对因果关系的渴求,而仅需关注相关关系,也就是说只需要知道是什么,而不需要知道为什么。这就推翻了自古以来的惯例,而我们做决定和理解现实的最基本方式也将受到挑战。

    例如:大数据思维一个最突出的特点,就是从传统的因果思维转向相关思维,传统的因果思维是说我一定要找到一个原因,推出一个结果来。而大数据没有必要找到原因,不需要科学的手段来证明这个事件和那个事件之间有一个必然,先后关联发生的一个因果规律。它只需要知道,出现这种迹象的时候,我就按照一般的情况,这个数据统计的高概率显示它会有相应的结果,那么我只要发现这种迹象的时候,我就可以去做一个决策,我该怎么做。这是和以前的思维方式很不一样,老实说,它是一种有点反科学的思维,科学要求实证,要求找到准确的因果关系。

    在这个不确定的时代里面,等我们去找到准确的因果关系,再去办事的时候,这个事情早已经不值得办了。所以“大数据”时代的思维有点像回归了工业社会的这种机械思维——机械思维就是说我按那个按钮,一定会出现相应的结果,是这样状态。而农业社会往前推,不需要找到中间非常紧密的、明确的因果关系,而只需要找到相关关系,只需要找到迹象就可以了。社会因此放弃了寻找因果关系的传统偏好,开始挖掘相关关系的好处。在此我向大家推荐一个大数据技术交流圈: 658558542  突破技术瓶颈,提升思维能力 。

    例如:美国人开发一款“个性化分析报告自动可视化程序”软件从网上挖掘数据信息,这款数据挖掘软件将自动从各种数据中提取重要信息,然后进行分析,并把此信息与以前的数据关联起来,分析出有用的信息。

    非法在屋内打隔断的建筑物着火的可能性比其他建筑物高很多。纽约市每年接到2.5万宗有关房屋住得过于拥挤的投诉,但市里只有200名处理投诉的巡视员,市长办公室一个分析专家小组觉得大数据可以帮助解决这一需求与资源的落差。该小组建立了一个市内全部90万座建筑物的数据库,并在其中加入市里19个部门所收集到的数据:欠税扣押记录、水电使用异常、缴费拖欠、服务切断、救护车使用、当地犯罪率、鼠患投诉,诸如此类。

    接下来,他们将这一数据库与过去5年中按严重程度排列的建筑物着火记录进行比较,希望找出相关性。果然,建筑物类型和建造年份是与火灾相关的因素。不过,一个没怎么预料到的结果是,获得外砖墙施工许可的建筑物与较低的严重火灾发生率之间存在相关性。利用所有这些数据,该小组建立了一个可以帮助他们确定哪些住房拥挤投诉需要紧急处理的系统。他们所记录的建筑物的各种特征数据都不是导致火灾的原因,但这些数据与火灾隐患的增加或降低存在相关性。这种知识被证明是极具价值的:过去房屋巡视员出现场时签发房屋腾空令的比例只有13%,在采用新办法之后,这个比例上升到了70%——效率大大提高了。

    全世界的商界人士都在高呼大数据时代来临的优势:一家超市如何从一个17岁女孩的购物清单中,发现了她已怀孕的事实;或者将啤酒与尿不湿放在一起销售,神奇地提高了双方的销售额。大数据透露出来的信息有时确实会起颠覆。比如,腾讯一项针对社交网络的统计显示,爱看家庭剧的男人是女性的两倍还多;最关心金价的是中国大妈,但紧随其后的却是90后。而在过去一年,支付宝中无线支付比例排名前十的竟然全部在青海、西藏和内蒙古地区。

    说明:用关注相关性思维方式来思考问题,解决问题。寻找原因是一种现代社会的一神论,大数据推翻了这个论断。过去寻找原因的信念正在被“更好”的相关性所取代。当世界由探求因果关系变成挖掘相关关系,我们怎样才能既不损坏建立在因果推理基础之上的社会繁荣和人类进步的基石,又取得实际的进步呢?这是值得思考的问题。

    解释:转向相关性,不是不要因果关系,因果关系还是基础,科学的基石还是要的。只是在高速信息化的时代,为了得到即时信息,实时预测,在快速的大数据分析技术下,寻找到相关性信息,就可预测用户的行为,为企业快速决策提供提前量。

    比如预警技术,只有提前几十秒察觉,防御系统才能起作用。比如,雷达显示有个提前量,如果没有这个预知的提前量,雷达的作用也就没有了,相关性也是这个原理。比如,相对论与量子论的争论也能说明问题,一个说上帝不掷骰子,一个说上帝掷骰子,争论几十年,最后承认两个都存在,而且量子论取得更大的发展——一个适用于宇宙尺度,一个适用于原子尺度。

    六、预测原理——从不能预测转变为可以预测

    大数据的核心就是预测,大数据能够预测体现在很多方面。大数据不是要教机器像人一样思考,相反,它是把数学算法运用到海量的数据上来预测事情发生的可能性。正因为在大数据规律面前,每个人的行为都跟别人一样,没有本质变化,所以商家会比消费者更了消费者的行为。

    例如:大数据助微软准确预测世界怀。微软大数据团队在2014年巴西世界足球赛前设计了世界怀模型,该预测模型正确预测了赛事最后几轮每场比赛的结果,包括预测德国队将最终获胜。预测成功归功于微软在世界怀进行过程中获取的大量数据,到淘汰赛阶段,数据如滚雪球般增多,常握了有关球员和球队的足够信息,以适当校准模型并调整对接下来比赛的预测。

    世界杯预测模型的方法与设计其它事件的模型相同,诀窍就是在预测中去除主观性,让数据说话。预测性数学模型几乎不算新事物,但它们正变得越来越准确。在这个时代,数据分析能力终于开始赶上数据收集能力,分析师不仅有比以往更多的信息可用于构建模型,也拥有在很短时间内通过计算机将信息转化为相关数据的技术。在此我向大家推荐一个大数据技术交流圈: 658558542  突破技术瓶颈,提升思维能力 。

    几年前,得等每场比赛结束以后才能获取所有数据,现在,数据是自动实时发送的,这让预测模型能获得更好的调整且更准确。微软世界怀模型的成绩说明了其模型的实力,它的成功为大数据的力量提供了强有力的证明,利用同样的方法还可预测选举或关注股票。类似的大数据分析正用于商业、政府、经济学和社会科学,它们都关于原始数据进行分析。

    我们进入了一个用数据进行预测的时代,虽然我们可能无法解释其背后的原因。如果一个医生只要求病人遵从医嘱,却没法说明医学干预的合理性的话,情况会怎么样呢?实际上,这是依靠大数据取得病理分析的医生们一定会做的事情。

    从一个人乱穿马路时行进的轨迹和速度来看他能及时穿过马路的可能性,都是大数据可以预测的范围。当然,如果一个人能及时穿过马路,那么他乱穿马路时,车子就只需要稍稍减速就好。但是这些预测系统之所以能够成功,关键在于它们是建立在海量数据的基础之上的。

    此外,随着系统接收到的数据越来越多,通过记录找到的最好的预测与模式,可以对系统进行改进。它通常被视为人工智能的一部分,或者更确切地说,被视为一种机器学习。真正的革命并不在于分析数据的机器,而在于数据本身和我们如何运用数据。一旦把统计学和现在大规模的数据融合在一起,将会颠覆很多我们原来的思维。所以现在能够变成数据的东西越来越多,计算和处理数据的能力越来越强,所以大家突然发现这个东西很有意思。所以,大数据能干啥?能干很多很有意思的事情。

    说明:用大数据预测思维方式来思考问题,解决问题。数据预测、数据记录预测、数据统计预测、数据模型预测,数据分析预测、数据模式预测、数据深层次信息预测等等,已转变为大数据预测、大数据记录预测、大数据统计预测、大数据模型预测和大数据分析预测、大数据模式预测、大数据深层次信息预测。

    互联网、移动互联网和云计算机保证了大数据实时预测的可能性,也为企业和用户提供了实时预测的信息,相关性预测的信息,让企业和用户抢占先机。由于大数据的全样本性,人和人都是一样的,所以云计算机软件预测的效率和准确性大大提高,有这种迹象,就有这种结果。

    七、信息找人原理——从人找信息,转变为信息找人

    互联网和大数据的发展,是一个从人找信息,到信息找人的过程。先是人找信息,人找人,信息找信息,现在是信息找人的这样一个时代。信息找人的时代,就是说一方面我们回到了一种最初的,广播模式是信息找人,我们听收音机,我们看电视,它是信息推给我们的,但是有一个缺陷,不知道我们是谁,后来互联网反其道而行,提供搜索引擎技术,让我知道如何找到我所需要的信息,所以搜索引擎是一个很关键的技术。

    例如:从搜索引擎——向推荐引擎转变。今天,后搜索引擎时代已经正式来到,什么叫做后搜索引擎时代呢?使用搜索引擎的频率会大大降低,使用的时长也会大大的缩短,为什么使用搜索引擎的频率在下降?时长在下降?原因是推荐引擎的诞生。就是说从人找信息到信息找人越来越成为了一个趋势,推荐引擎就是说它很懂我,知道我要知道,所以是最好的技术。乔布斯说,让人感受不到技术的技术是最好的技术。

    大数据还改变了信息优势。按照循证医学,现在治病的第一件事情不是去研究病理学,而是拿过去的数据去研究,相同情况下是如何治疗的。这导致专家和普通人之间的信息优势没有了。原来我相信医生,因为医生知道的多,但现在我可以到谷歌上查一下,知道自己得了什么病。

    谷歌有一个机器翻译的团队,最开始的时候翻译之后的文字根本看不懂,但是现在60%的内容都能读得懂。谷歌机器翻译团队里头有一个笑话,说从团队每离开一个语言学家,翻译质量就会提高。越是专家越搞不明白,但打破常规让数据说话,得到真理的速度反而更快。

    说明:用信息找人的思维方式思考问题,解决问题。从人找信息到信息找人,是交互时代一个转变,也是智能时代的要求。智能机器已不是冷冰冰的机器,而是具有一定智能的机器。信息找人这四个字,预示着大数据时代可以让信息找人,原因是企业懂用户,机器懂用户,你需要什么信息,企业和机器提前知道,而且主动提供你需要的信息。

    八、机器懂人原理——由人懂机器转变为机器更懂人

    不是让人更懂机器,而是让机器更懂人,或者说是能够在使用者很笨的情况下,仍然可以使用机器。甚至不是让人懂环境,而是让我们的环境来懂我们,环境来适应人,某种程度上自然环境不能这样讲,但是在数字化环境中已经是这样的一个趋势,就是我们所在的生活世界,越来越趋向于它更适应于我们,更懂我们。哪个企业能够真正做到让机器更懂人,让环境更懂人,让我们随身携带的整个的生活世界更懂得我们的话,那他一定是具有竞争力的了,而“大数据”技术能够助我们一臂之力。

    例如:亚马逊网站,只要买书,就会提供一个今天司空见惯的推荐,买了这本书的人还买了什么书,后来发现相关推荐的书比我想买的书还要好,时间久之后就会对它产生一种信任。这种信任就像在北京的那么多书店里面,以前买书的时候就在几家,原因在于我买书比较多,他都已经认识我了,都是我一去之后,我不说我要买什么书,他会推荐最近上来的几本书,可能是我感兴趣的。这样我就不会到别的很近的书店,因为这家书店更懂我。在此我向大家推荐一个大数据技术交流圈: 658558542  突破技术瓶颈,提升思维能力 。

    例如,解题机器人挑战大型预科学校高考模拟试题的结果,解题机器人的学历水平应该比肩普通高三学生。计算机不擅长对语言和知识进行综合解析,但通过借助大规模数据库对普通文章做出判断的方法,在对话填空和语句重排等题型上成绩有所提高。

    让机器懂人,是让机器具有学习的功能。人工智能已转变为研究机器学习。大数据分析要求机器更智能,具有分析能力,机器即时学习变得更重要。机器学习是指:计算机利用经验改善自身性能的行为。机器学习主要研究如何使用计算机模拟和实现人类获取知识(学习)过程、创新、重构已有的知识,从而提升自身处理问题的能力,机器学习的最终目的是从数据中获取知识。

    大数据技术的其中一个核心目标是要从体量巨大、结构繁多的数据中挖掘出隐蔽在背后的规律,从而使数据发挥最大化的价值。由计算机代替人去挖掘信息,获取知识。从各种各样的数据(包括结构化、半结构化和非结构化数据)中快速获取有价值信息的能力,就是大数据技术。大数据机器分析中,半监督学习、集成学习、概率模型等技术尤为重要。

    说明:用机器更懂人的思维方式思考问题,解决问题。机器从没有常识到逐步有点常识,这是很大的变化。去年,美国人把一台云计算机送到大学里去进修,增加知识和常识。最近俄罗斯人开发一台计算机软件通过图林测试,表明计算机已初步具有智能。

    让机器懂人,这是人工智能的成功,同时,也是人的大数据思维转变。你的机器、你的软件、你的服务是否更懂人?将是衡量一个机器、一件软件、一项服务好坏的标准。人机关系已发生很大变化,由人机分离,转化为人机沟通,人机互补,机器懂人,现在年青人已离不开智能手机是一个很好的例证。在互联网大数据时代,有问题—问机器—问百度,成为生活的一部分。机器什么都知道,原因是有大数据库,机器可搜索到相关数据,从而使机器懂人。是人让机器更懂人,如果机器更懂人,那么机器的价值更高。

    九、电子商务智能原理——大数据改变了电子商务模式,让电子商务更智能

    商务智能,在今天大数据时代它获得的重新的定义。例如:传统企业进入互联网,在掌握了“大数据”技术应用途径之后,会发现有一种豁然开朗的感觉,我整天就像在黑屋子里面找东西,找不着,突然碰到了一个开关,发现那么费力的找东西,原来很容易找得到。大数据思维,事实上它不是一个全称的判断,只是对我们所处的时代某一个纬度的描述。

    大数据时代不是说我们这个时代除了大数据什么都没有,哪怕是在互联网和IT领域,它也不是一切,只是说在我们的时代特征里面加上这么一道很明显的光,从而导致我们对以前的生存状态,以及我们个人的生活状态的一个差异化的一种表达。

    例如:大数据让软件更智能。尽管我们仍处于大数据时代来临的前夕,但我们的日常生活已经离不开它了。交友网站根据个人的性格与之前成功配对的情侣之间的关联来进行新的配对。例如,具有“自动改正”功能的智能手机通过分析我们以前的输入,将个性化的新单词添加到手机词典里。在不久的将来,世界许多现在单纯依靠人类判断力的领域都会被计算机系统所改变甚至取代。计算机系统可以发挥作用的领域远远不止驾驶和交友,还有更多更复杂的任务。别忘了,亚马逊可以帮我们推荐想要的书,谷歌可以为关联网站排序,Facebook知道我们的喜好,而linkedIn可以猜出我们认识谁。在此我向大家推荐一个大数据技术交流圈: 658558542  突破技术瓶颈,提升思维能力 。

    当然,同样的技术也可以运用到疾病诊断、推荐治疗措施,甚至是识别潜在犯罪分子上。或者说,在你还不知道的情况下,体检公司、医院提醒你赶紧去做检查,可能会得某些病,商家比你更了解你自己,以及你这样的人在某种情况下会出现的可能变化。就像互联网通过给计算机添加通信功能而改变了世界,大数据也将改变我们生活中最重要的方面,因为它为我们的生活创造了前所未有的可量化的维度。

    说明:用电子商务更智能的思维方式思考问题,解决问题。人脑思维与机器思维有很大差别,但机器思维在速度上是取胜的,而且智能软件在很多领域已能代替人脑思维的操作工作。例如美国一家媒体公司已用电脑智能软件写稿,可用率已达70%。云计算机已能处理超字节的大数据量,人们需要的所有信息都可得到显现,而且每个人互联网行为都可记录,这些记录的大数据经过云计算处理能产生深层次信息,经过大数据软件挖掘,企业需要的商务信息都能实时提供,为企业决策和营销、定制产品等提供了大数据支持。

    十、定制产品原理——由企业生产产品转变为由客户定制产品

    下一波的改革是大规模定制,为大量客户定制产品和服务,成本低、又兼具个性化。比如消费者希望他买的车有红色、绿色,厂商有能力满足要求,但价格又不至于像手工制作那般让人无法承担。因此,在厂家可以负担得起大规模定制带去的高成本的前提下,要真正做到个性化产品和服务,就必须对客户需求有很好的了解,这背后就需要依靠大数据技术。

    例如:大数据改变了企业的竞争力。定制产品这是一个很好的技术,但是能不能够形成企业的竞争力呢?在产业经济学里面有一个很重要的区别,就是生产力和竞争力的区别,就是说一个东西是具有生产力的,那这种生产力变成一种通用生产力的时候,就不能形成竞争力,因为每一个人,每一个企业都有这个生产力的时候,只能提高自己的生产力,过去没有车的时候和有车的时候,你的活动半径、运行速度大大提高了,但是当每一个人都没有车的时候,你有车,就会形成竞争力。大数据也一样,你有大数据定制产品,别人没有,就会形成竞争力。

    在互联网大数据的时代,商家最后很可能可以针对每一个顾客进行精准的价格歧视。我们现在很多的行为都是比较粗放的,航空公司会给我们里程卡,根据飞行公里数来累计里程,但其实不同顾客所飞行的不同里程对航空公司的利润贡献是不一样的。所以有一天某位顾客可能会收到一封信,“恭喜先生,您已经被我们选为幸运顾客,我们提前把您升级到白金卡。”这说明这个顾客对航空公司的贡献已经够多了。有一天银行说“恭喜您,您的额度又被提高了,”就说明钱花得已经太多了。

    正因为在大数据规律面前,每个人的行为都跟别人一样,没有本质变化。所以商家会比消费者更了消费者的行为。也许你正在想,工作了一年很辛苦,要不要去哪里度假?打开e-Mail,就有航空公司、旅行社的邮件。

    说明:用定制产品思维方式思考问题,解决问题。大数据时代让企业找到了定制产品、订单生产、用户销售的新路子。用户在家购买商品已成为趋势,快递的快速,让用户体验到实时购物的快感,进而成为网购迷,个人消费不是减少了,反而是增加了。为什么企业要互联网化大数据化,也许有这个原因。2000万家互联网网店的出现,说明数据广告、数据传媒的重要性。

    企业产品直接销售给用户,省去了中间商流通环节,使产品的价格可以以出厂价销售,让销费者获得了好处,网上产品便宜成为用户的信念,网购市场形成了。要让用户成为你的产品粉丝,就必须了解用户需要,定制产品成为用户的心愿,也就成为企业发展的新方向。

    以上就是关于大数据是什么和大数据技术十大核心原理详解介绍,想要了解更多关于大数据的新闻资讯,请关注大讲台官网、微信等平台,大讲台IT职业在线学习教育平台为您提供权威的大数据培训课程和视频教程系统,通过大讲台金牌讲师在线录制的第一套自适应大数据在线视频课程系统,让你快速掌握大数据从入门到精通大数据开发实战技能。

    感谢您的观看,如有不足之处,欢迎批评指正。

    在此我向大家推荐一个大数据开发交流圈:

    658558542    (☛点击即可加入群聊

    里面整理了一大份学习资料,全都是些干货,包括大数据技术入门,大数据离线处理、数据实时处理、Hadoop 、Spark、Flink、推荐系统算法以及源码解析等,送给每一位大数据小伙伴,让自学更轻松。这里不止是小白聚集地,还有大牛在线解答!欢迎初学和进阶中的小伙伴一起进群学习交流,共同进步!

    最后祝福所有遇到瓶颈的大数据程序员们突破自己,祝福大家在往后的工作与面试中一切顺利。

     

     

    展开全文
  • 大数据应用的关键点是数据来源、产品化和价值创造;数据资源分布不均,大数据应用在数据密集领域更易获得突破;须对不当的行业管理模式进行改革,以促进大数据在已有各个行业中应用。 大数据贵在应用。当前,在国家...
  • 大数据的核心思想

    2016-04-24 15:07:32
    IBM中国最近向行业客户展示了他们如何利用大数据技术来分析网球赛:在每场比赛开始前,分析软件都会处理球员双方的历史交锋数据,发现比赛中球员致胜的关键指标,并实时更新。该分析的依据是长达8年的大满贯网球赛事...
  • 全球的数据量正在以每18个月翻一倍的惊人速度增长,世界正在高速数字化,大数据堪比石油,如何掘金大数据是所有个人、企业和国家的机遇和挑战。中国是人才大国,能理解和应用大数据的创新人才更是稀缺资源。大数据...
  • 走进大数据,一种新兴的数据挖掘技术,它正在让大数据处理和分析变得更便宜更快速。大数据技术一旦进入超级计算时代,很快便可应用于普通企业,在遍地开花的过程中,它将改变许多行业业务经营的模式。 在计算机世界...
  • 大数据思维是客观存在,大数据思维是新的思维观。用大数据思维方式思考问题,解决问题是当下企业潮流。大数据思维开启了一次重大的时代转型。 大数据思维原理是什么?笔者概括为10项原理。
  • 走进大数据,一种新兴的数据挖掘技术,它正在让大数据处理和分析变得更便宜更快速。大数据技术一旦进入超级计算时代,很快便可应用于普通企业,在遍地开花的过程中,它将改变许多行业业务经营的模式。 在计算机世界...
  • 大数据思维的十大核心原理
  • 1、数据核心原理  从“流程”核心转变为“数据”核心  大数据时代,计算模式也发生了转变,从“流程”核心转变为“数据”核心。Hadoop体系的分布式计算...大数据的发展亦是时代发展的必然,如果大家还想要了...
  • 由于企业级用户对翻译资料的需求大、垂直性专业要求高,一般都会将翻译业务外包给翻译公司去做,或者借助一些计算机辅助翻译软件(CAT)完成翻译,比如市面上惯用的企业服务翻译软件SDL trados、Memoq、译马网等。...
  • 一、数据核心原理   从“流程”核心转变为“数据”核心   大数据时代,计算模式也发生了转变,从“流程”核心转变为“数据”核心。Hadoop体系的分布式计算框架已经是“数据”为核心的范式。非结构化数据及分析...
  • 什么是大数据大数据的价值是什么? 简单地说我们需要一种算法,这种算法的特点是:当给定的已知"基础数据"越多,通过运算得到的"解"就越优,可用于预测技术,如天气预测、股票预测、信用预测等等。为了实现...
  • 我在一次社区活动中做过一次分享,演讲题目为《大数据平台架构技术选型与场景运用》。在演讲中,我主要分析了大数据平台架构的生态环境,并主要以数据源、数据采集、数据存储与数据处理四个方面展开分析与讲解,并...
  • 我们将迎来一个“大数据时代”。与变化相始终的中国企业,距离这场革命还有多远?而追上领先者又需要多快的步伐?   {研究结论}   怎样才能用起来大数据?障碍如何解决?中国企业家研究院对10多家在大数据...
  • 大数据思维原理是什么?简单概括为10项原理,当样本数量足够大时,你会发现其实每个人都是一模一样的。  一、数据核心原理  从“流程”核心转变为“数据”核心  大数据时代,计算模式也发生了转变,从“流程”...
1 2 3 4 5 ... 20
收藏数 1,440
精华内容 576
关键字:

大数据配对软件