2013-01-17 21:07:00 iteye_18800 阅读数 303

研究生课程系列文章参见索引《在信科的那些课

学期末一直忙考试,大作业,很久没来CSDN耕耘了。。。

虽然考试都结束了,手头还是累积了不少活儿要补,不多写了,晒个小项目,模式识别课程的作业。

大体框架如下:


还是之前的火灾检测,但是在一些简单的颜色、运动检测的基础上增加了模式识别的方法。

因为特征比较简单——SVM、非线性SVM、决策树、随机森林都是用的颜色直方图来训练;Adaboost就是完全用的《Rapid》中的Haar特征——所以其实模式识别方法并没有实质性的提高检测率,主要的检测效果还是依据前期初期得到的。

以下是用QT实现的小Demo:



再晒个检测效果图:


都是比较简单的场景,所以看上去效果还行,嘿嘿~

(转载请注明作者和出处:http://blog.csdn.net/xiaowei_cqu未经允许请勿用于商业用途)



2019-04-20 08:13:50 weixin_42137700 阅读数 167

https://www.toutiao.com/a6679196033882259976/

 

人类想要实现一系列的基本活动,如生活、工作、学习就必须依靠自身的器官,除脑以外,最重要的就是我们的眼睛了,(工业)机器人也不例外,要完成正常的生产任务,没有一套完善的,先进的视觉系统是很难想象的。

机器视觉系统就是利用机器代替人眼来作各种测量和判断。它是计算科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。图像处理和模式识别等技术的快速发展,也大大地推动了机器视觉的发展。

 

图像处理和模式识别等技术的快速发展大大地推动了机器视觉的发展

 

图像处理和模式识别等技术的快速发展 大大地推动了机器视觉的发展

机器视觉系统的应用

在生产线上,人来做此类测量和判断会因疲劳、个人之间的差异等产生误差和错误,但是机器却会不知疲倦地、稳定地进行下去。一般来说,机器视觉系统包括了照明系统、镜头、摄像系统和图像处理系统。对于每一个应用,我们都需要考虑系统的运行速度和图像的处理速度、使用彩色还是黑白摄像机、检测目标的尺寸还是检测目标有无缺陷、视场需要多大、分辨率需要多高、对比度需要多大等。从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分。

 

图像处理和模式识别等技术的快速发展大大地推动了机器视觉的发展

 

图像处理和模式识别等技术的快速发展 大大地推动了机器视觉的发展

机器视觉系统工作过程

• 一个完整的机器视觉系统的主要工作过程如下:• 1、工件定位检测器探测到物体已经运动至接近摄像系统的视野中心,向图像采集部分发送触发脉冲。• 2、图像采集部分按照事先设定的程序和延时,分别向摄像机和照明系统发出启动脉冲。• 3、摄像机停止目前的扫描,重新开始新的一帧扫描,或者摄像机在启动脉冲来到之前处于等待状态,启动脉冲到来后启动一帧扫描。• 4、摄像机开始新的一帧扫描之前打开曝光机构,曝光时间可以事先设定。• 5、另一个启动脉冲打开灯光照明,灯光的开启时间应该与摄像机的曝光时间匹配。• 6、摄像机曝光后,正式开始一帧图像的扫描和输出。• 7、图像采集部分接收模拟视频信号通过A/D将其数字化,或者是直接接收摄像机数字化后的数字视频数据。• 8、图像采集部分将数字图像存放在处理器或计算机的内存中。• 9、处理器对图像进行处理、分析、识别,获得测量结果或逻辑控制值。• 10、处理结果控制流水线的动作、进行定位、纠正运动的误差等。

机器视觉系统的优点有:

• 1、非接触测量,对于观测者与被观测者都不会产生任何损伤,从而提高系统的可靠性。• 2、具有较宽的光谱响应范围,例如使用人眼看不见的红外测量,扩展了人眼的视觉范围。• 3、长时间稳定工作,人类难以长时间对同一对象进行观察,而机器视觉则可以长时间地作测量、分析和识别任务。• 4、机器视觉系统的应用领域越来越广泛。在工业、农业、国防、交通、医疗、金融甚至体育、娱乐等等行业都获得了广泛的应用,可以说已经深入到我们的生活、生产和工作的方方面面。

科幻电影中的智能机器人

 

图像处理和模式识别等技术的快速发展大大地推动了机器视觉的发展

 

图像处理和模式识别等技术的快速发展 大大地推动了机器视觉的发展

———如下图所示是一种有电脑操控的加工机械装置。———该装置主要通过前端的摄像头对被加工对象进行图像采集和加工定位,从而完成加工。———机械类的各部件的精度由工人的熟练程度和工作经验以及加工工具(如各类机床)到如今的由数字化和智能化的加工设备(如数控机床),更多的能适应社会需要和发展的高精度,高难度的零件被加工出来。

 

图像处理和模式识别等技术的快速发展大大地推动了机器视觉的发展

 

图像处理和模式识别等技术的快速发展 大大地推动了机器视觉的发展

视觉系统简单来说就可以用三个及独立又相互联系的模块来概括:目标物图像的采集、图像的处理、指令的发出。

视觉系统的设计分为软件设计和硬件设计两大部分

 

图像处理和模式识别等技术的快速发展大大地推动了机器视觉的发展

 

图像处理和模式识别等技术的快速发展 大大地推动了机器视觉的发展

视觉系统的硬件设计

视觉系统的硬件主要由镜头、摄像机、图像采集卡、输入输出单元、控制装置构成。

一套视觉系统的好坏则分别取决于摄像机像素的高低,硬件质量的优劣,更重要的是各个部件间的相互配合和合理使用。

 

图像处理和模式识别等技术的快速发展大大地推动了机器视觉的发展

 

图像处理和模式识别等技术的快速发展 大大地推动了机器视觉的发展

——在恶劣的自然环境中,在生产的一线,在许多复杂的情况下,要想保证整个视觉系统的正常工作,构成系统的各个硬件就必须具有很好的耐磨损性和经受住各种不可预料的情况和考验。——随着科技的进步和现代生产生活的需要视觉系统正在机器,特别是智能机械的飞速发展,原有的系统硬件已不适应新的需要,为此,必须提高硬件的水平和质量来保证系统的正常运行。 ——镜头、摄像机、图像采集卡、输入输出单元、控制装置构就好像电脑的显示器、电源、主机(处理器、内存条、硬盘、显卡等)一样,每一个构成部件都很关键,它们质量如果不过关,整个机器就无法正常工作,更别说完成复杂的工作和给以的任务了。

视觉系统的软件设计

——视觉系统的软件设计至关重要,在当今信息化大趋势下,智能控制越来越依靠软件方面的功用。——视觉系统的软件设计是一个复杂的课题,不仅要考虑到程序设计的最优化,还要考虑到算法的有效性,及其能否实现,在软件设计的过程中要考虑到可能出现的问题。——视觉系统的软件设计完成还要对其鲁棒性进行检测和提高,以适应复杂的外部环境(鲁棒性就是系统的健壮性。它是在异常和危险情况下系统生存的关键。)

一种视觉导航软件处理的流程图

 

图像处理和模式识别等技术的快速发展大大地推动了机器视觉的发展

 

图像处理和模式识别等技术的快速发展 大大地推动了机器视觉的发展

视觉系统的实际应用

•机器视觉技术的城市交通预警系统 •近几年来,随着经济的发展,我国各大城市内部的交通基础设施建设也得到了快速发展,但是,尽管城市道路越建越宽,立交桥越建越多,交通信号越来越复杂,道路的拥挤程度和交通事故的发生率却没有得到明显的缓解,交通运输业特别是城市交通承受着越来越大的压力。

 

图像处理和模式识别等技术的快速发展大大地推动了机器视觉的发展

 

图像处理和模式识别等技术的快速发展 大大地推动了机器视觉的发展

目前,随着城市交通现代化、智能化的进程日益加快,国内相关领域的研究也成为新的热点。关于智能交通系统(Intelligent Transportation System;简称为ITS)的研究得到了欧洲、美国、日本、加拿大等等很多发达国家的广泛重视,他们纷纷投入巨资应用于智能交通系统的研究,并进行了大量的模拟实验,很多子系统已经能够初步达到人们所希望的智能化程度。越来越多的事实已经证明,先进的ITS将有效地利用现有交通设施,减少交通负荷和环境污染、保证交通安全、提高运输效率、促进社会经济发展、提高人民生活质量,并能够推动社会信息化及新产业的形成。基于机器视觉技术的城市交通预警系统,是先进交通管理系统的子系统,是通过根据交通状况的变化及早预警,配合交通管理的智能监控系统。

基于机器视觉技术的城市交通预警系统结构框架

• 系统主要功能模块简介:• 视觉监测:城市交通环境是实时变化的,通过视频监测技术采集相关数据,将检测到的环境特征值送往信息融合处理器。• 信息融合处理器:将信息通过模糊神经网络方法得到输出结果。• 监测预警:根据并做出决策,即相应调整实时交通信息、信号控制,以及对于将要发生事故或已经发生事故区域采取紧急救援措施。

机器人视觉

•机器人视觉【robot vision】 使机器人具有视觉感知功能的系统。•机器人视觉可以通过视觉传感器获取环境的二维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置。•机器人视觉广义上称为机器视觉,其基本原理与计算机视觉类似。•计算机视觉研究视觉感知的通用理论,研究视觉过程的分层信息表示和视觉处理各功能模块的计算方法。而机器视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。

机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。

2016-10-27 16:53:46 linghugoogle 阅读数 2421

《模式识别及其在图像处理中的应用》

1、模式识别基本框架

一般认为,模式识别是通过具体的事物进行观测所得到的具有时间、空间分布的信息,模式所属的类别或同一类中模式的总体成为模式类,其中个别具体的模式往往成为样本。

样本——预处理——特征选择和提取——分类器设计&&分类结果

【由上述分析可知,模式识别本身就是将特征空间映射为选择空间,将多维特征降维以减小复杂度,增加鲁棒性】

2、特征提取和选择

特征提取是指通过映射的方法用低维空间来表示样本的过程,特征提取后样本的可分性应该更好。常用方法:主元分析(PCA)、线性判别分析、核函数主元分析(Kernel PCA)、独立主元分析(ICA)、自组织映射(SOM)

特征提取后的各个特征的物理意义有时不是很明确,往往很难看出各个特征对分类器的影响,有的甚至有副作用。因此要在这些特征中选择一部分,这就是特征选择。

为了判断提取和选择的特征对分类的有效性,人们提出各种衡量特征分类性能的判据。最直接最有效的盘踞是计算分类器错误概率,但很难实现。最简单的判据是用于可用性判据的类内类间距离判据。

【由上述分析可知,提取和选择对算法性能有决定性的作用,具体操作上既可以通过有监督学习、也可以无监督的聚类分析;除此之外,判断标准很重要,只有有了判断标准,才能够对选择的算法进行衡量和改进,这是反馈】

3、模式识别的主要方法及其在图像处理中的应用

1)     统计决策法

以概率论和数理统计为基础,包括参数法和非参数法。参数法以Bayes决策准则为指导,其中最小错误率和最小风险贝叶斯决策是最常用的决策方法。参数估计方法在样本数据趋于无穷大时渐进理论,然而实际条件往往达不到。在样本数量有限的时候,往往根据样本直接设计分类器,这就是非参数方法。这类方法物理意义直观,但所得的结果和错误率往往没有直接联系。所设计的分类器不能保证最优。比较典型的有线性分类器、最近邻方法、K均值聚类发。

缺点:缺少结构信息。

2)     结构模式分析

利用模式的结构描述与句法描述之间的相似性对模式进行分类,每个模式由它的各个子部分(称为子模式或者模式基元)的组合来表示。对模式的识别常以句法分析的方式进行,即依据给定的一组句法规则来剖析模式的结构。当模式中的每一个基元被分辨出来后,识别过程就可通过执行语法分析来实现。

3)     模糊模式识别

将非此即彼的0,1判断更改为隶属度函数。模糊模式识别的关键在隶属度函数的建立,目前的主要方法有模糊统计、模糊分布法、二元对比排序法、相对比较法和专家评分法。

4)     人工神经网络模式识别

定义:用软件或者硬件的方法,建立许多以大量处理单元为结点,处理单元实现(加权值的)互联的拓扑网络,进行模拟。

主要特点:信息处理的并行性、自组织和自适应性、具有很强的学习能力和联想功能以及容错性能。

4、模式识别的新进展及其在图像处理中的应用

1)     支持向量机

2)     仿生模式识别

【这是篇2004年的论文,并且文章是综述,所以对SVM和仿生模式讲得不是很清楚,接下来找些SVM的论文研究研究】

 

《模式识别方法概论》

【这是篇2012年的文章,讲的内容很多与上面的文章有重复,所以不再每小节摘录,只摘录感觉写得好的地方】

1、为提高识别结果的可靠性,往往需要加入知识库(规则)以对可能产生的错误进行修正,或者引入限制条件大大缩小待识别特征在模型库的搜索空间。

2、SVM基本思想:先在样本空间或特征空间,构造出最优超平面,使得超平面与不同类样本之间的距离最大,从而达到最大的泛化能力。



2015-08-31 16:51:14 snakorse 阅读数 17481
  • 在我的理解里,要实现计算机视觉必须有图像处理的帮助,而图像处理倚仗与模式识别的有效运用,而模式识别是人工智能领域的一个重要分支,人工智能与机器学习密不可分。纵观一切关系,发现计算机视觉的应用服务于机器学习。各个环节缺一不可,相辅相成。

    计算机视觉(computer vision),用计算机来模拟人的视觉机理获取和处理信息的能力。就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。

    图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。基本内容图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理一般指数字图像处理。

    模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。

    机器学习(Machine Learning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。机器学习在人工智能的研究中具有十分重要的地位。一个不具有学习能力的智能系统难以称得上是一个真正的智能系统,但是以往的智能系统都普遍缺少学习的能力。随着人工智能的深入发展,这些局限性表现得愈加突出。正是在这种情形下,机器学习逐渐成为人工智能研究的核心之一。它的应用已遍及人工智能的各个分支,如专家系统、自动推理、自然语言理解、模式识别、计算机视觉、智能机器人等领域。机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。这些研究目标相互影响相互促进。

    人类研究计算机的目的,是为了提高社会生产力水平,提高生活质量,把人从单调复杂甚至危险的工作中解救出来。今天的计算机在计算速度上已经远远超过了人,然而在很多方面,特别是在人类智能活动有关的方面例如在视觉功能、听觉功能、嗅觉功能、自然语言理解能力功能等等方面,还不如人。

    这种现状无法满足一些高级应用的要求。例如,我们希望计算机能够及早地发现路上的可疑情况并提醒汽车驾驶员以避免发生事故,我们更希望计算机能帮助我们进行自动驾驶,目前的技术还不足以满足诸如此类高级应用的要求,还需要更多的人工智能研究成果和系统实现的经验。

    什么是人工智能呢?人工智能,是由人类设计并在计算机环境下实现的模拟或再现某些人智能行为的技术。一般认为,人类智能活动可以分为两类:感知行为与思维活动。模拟感知行为的人工智能研究的一些例子包括语音识别、话者识别等与人类的听觉功能有关的“计算机听觉”,物体三维表现的形状知识、距离、速度感知等与人类视觉有关的“计算机视觉”,等等。模拟思维活动的人工智能研究的例子包括符号推理、模糊推理、定理证明等与人类思维有关的“计算机思维”,等等。

    从图像处理和模式识别发展起来的计算机视觉研究对象之一是如何利用二维投影图像恢复三维景物世界。计算机视觉使用的理论方法主要是基于几何、概率和运动学计算与三维重构的视觉计算理论,它的基础包括射影几何学、刚体运动力学、概率论与随机过程、图像处理、人工智能等理论。计算机视觉要达到的基本目的有以下几个:

    (1) 根据一幅或多幅二维投影图像计算出观察点到目标物体的距离;

    (2) 根据一幅或多幅二维投影图像计算出目标物体的运动参数;

    (3) 根据一幅或多幅二维投影图像计算出目标物体的表面物理特性;

    (4) 根据多幅二维投影图像恢复出更大空间区域的投影图像。

    计算机视觉要达到的最终目的是实现利用计算机对于三维景物世界的理解,即实现人的视觉系统的某些功能。

    在计算机视觉领域里,医学图像分析、光学文字识别对模式识别的要求需要提到一定高度。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。在计算机视觉的大多数实际应用当中,计算机被预设为解决特定的任务,然而基于机器学习的方法正日渐普及,一旦机器学习的研究进一步发展,未来“泛用型”的电脑视觉应用或许可以成真。

    人工智能所研究的一个主要问题是:如何让系统具备“计划”和“决策能力”?从而使之完成特定的技术动作(例如:移动一个机器人通过某种特定环境)。这一问题便与计算机视觉问题息息相关。在这里,计算机视觉系统作为一个感知器,为决策提供信息。另外一些研究方向包括模式识别和机器学习(这也隶属于人工智能领域,但与计算机视觉有着重要联系),也由此,计算机视觉时常被看作人工智能与计算机科学的一个分支。

    机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演译。

    为了达到计算机视觉的目的,有两种技术途径可以考虑。第一种是仿生学方法,即从分析人类视觉的过程入手,利用大自然提供给我们的最好参考系——人类视觉系统,建立起视觉过程的计算模型,然后用计算机系统实现之。第二种是工程方法,即脱离人类视觉系统框框的约束,利用一切可行和实用的技术手段实现视觉功能。此方法的一般做法是,将人类视觉系统作为一个黑盒子对待,实现时只关心对于某种输入,视觉系统将给出何种输出。这两种方法理论上都是可以使用的,但面临的困难是,人类视觉系统对应某种输入的输出到底是什么,这是无法直接测得的。而且由于人的智能活动是一个多功能系统综合作用的结果,即使是得到了一个输入输出对,也很难肯定它是仅由当前的输入视觉刺激所产生的响应,而不是一个与历史状态综合作用的结果。

    不难理解,计算机视觉的研究具有双重意义。其一,是为了满足人工智能应用的需要,即用计算机实现人工的视觉系统的需要。这些成果可以安装在计算机和各种机器上,使计算机和机器人能够具有“看”的能力。其二,视觉计算模型的研究结果反过来对于我们进一步认识和研究人类视觉系统本身的机理,甚至人脑的机理,也同样具有相当大的参考意义。

原文链接:http://shijuanfeng.blogbus.com/logs/216968430.html
2013-11-28 16:46:28 longzaitianya1989 阅读数 6789

学习了计算机视觉方向有段时间了,整理一下一些基本的概念:

计算机视觉,计算机图形学,模式识别,数字图像处理等概念和联系

1.计算机图形学

计算机图形学是给定关于景象结构、表面反射特性、光源配置及相机模型的信息,生成图像实现的是从模型到图像的变换。 

例如使用opengl进行渲染生成三维场景,这前提是我们已经给定了图形绘制,纹理,材质,灯光,摄像机等这些的配置信息,最后得到的是图形图像。

2.模式识别

模式识别则是从特征空间到类别空间的变换。研究内容包括特征提取(PCA,LDA,LFA,Kernel,Mean Shift,SIFT,ISOMAP,LLE);特征选择;分类器设计(SVM,AdaBoost)等。 这其中通过对先验知识的学习,训练分类器,得到特征与类别的映射关系模型,通过这一模型(分类器),将待测样本分开到相应类别中。

3.数字图像处理

数字图像处理,顾名思义,就是对已经数字化的图像进行处理,包括对数字图像的增强(空域和频域),形态学操作,图像分割,图像复原等操作,数字图像处理实在像素级别上对图像进行操作的,不涉及图像的内容。实现的是从图像到图像的变换。人是最终的解释者。

数字图像处理的三个层次:


4.计算机视觉和机器视觉

计算机视觉(Computer Vision, CV)是用计算机来模拟人的视觉机理获取和处理信息的能力。更准确点说,它是利用摄像机和电脑代替人眼使得计算机拥有类似于人类的那种对目标进行分割、分类、识别、跟踪、判别决策的功能。计算机视觉是给定图象,推断景象特性,实现的是从图像模型信息的变换,也就是说从图象数据提取信息,包括景象的三维结构,运动检测,识别物体等。 计算机是图像的最终解释者。机器视觉和计算机视觉有时候可以等同,机器视觉是计算机视觉的工程化。计算机视觉中的基本理论就是Marr理论。






计算机图形学是计算机视觉的逆问题,两者从最初相互独立的平行发展到最近的融合是一大趋势。图像模式的分类是计算机视觉中的一个重要问题,模式识别中的许多方法可以应用于计算机视觉中。

没有更多推荐了,返回首页