• 数字图像处理数字图像处理学习内容总结 第一章 绪论 1 什么是数字图像处理 2 使用数字图像处理领域的实例 3 数字图像处理的基本步骤 4 图像处理系统的组成 第二章 数字图像处理基础 1 视觉感知要素 2 光和电磁...

    数字图像处理


    一、学习内容总结

    1. 第一章 绪论

    本章主要有几个目的:

    1. 定义我们称之为数字图像处理领域的范围;
    2. 通过考察几个领域,给出图像处理技术状况的概念;
    3. 讨论图像处理用到的几种方法;
    4. 概述通用目的的典型图像处理系统的组成。

    1.1 什么是数字图像处理

    我们给出一些定义:

    • 强度灰度:一幅图像可以被定义为一个二维函数 f(x,y),其中 x,y 是空间(平面)坐标,而在任何一处的幅值 f 被称为在该点的灰度或强度。
    • 数字图像:当 x,y 或灰度值 f有限的离散数值时,称该图像为数字图像。也就是说数字图像是由有限数量的元素组成,每个元素都有特定的位置和幅值。这些元素被称为图画元素图像元素像素
    • 数字图像处理 : 指用特定的计算机来处理数字图像。

    本书中将数字图像处理界定为其输入和输出都是图像的处理。

    1.2 使用数字图像处理领域的实例

    • 伽马射线成像:医学和天文。
    • X射线成像:最早用于成像的电磁辐射源之一,医学诊断。
    • 紫外波段成像 :荧光显微镜。
    • 可见光及红外线成像 :可见显微镜技术,遥感,天气预测和预报,红外卫星图像,自动视觉检测,检测丢失的部件,指纹图像。
    • 微波波段成像 :雷达。
    • 无线电波段成像 :天文学和医学(核磁共振)。
    • 其他方式 :声波成像,电子显微镜方法,(由计算机产生的)合成图像。

    1.3 数字图像处理的基本步骤

    这里写图片描述

    1.4 图像处理系统的组成

    这里写图片描述

    2. 第二章 数字图像处理基础

    本章主要介绍数字图像处理一些基本概念

    2.1 视觉感知要素

    • 人眼的结构

      重点介绍视网膜里的两类光感受器

      • 锥状体 :对颜色高度敏感,这种视觉称为白昼视觉或者亮视觉。高照明水平下执行。
      • 杆状体 :没有彩色感觉,对低照明度敏感,称为暗视觉或微光视觉。低照明水平下执行。
    • 亮度适应与辨别

      • 亮度适应现象 :视觉系统不能同时在一个范围内工作,它是通过改变其整个灵敏度来完成这一较大变动的。
      • 韦伯比 :较大:亮度辨别能力较差;反之,较好。
    • 感知亮度 不是简单的强度的函数

      • 视觉系统往往会在不同强度区域的边界处出现“下冲”或“上冲”现象。
      • 同时对比、错觉

    2.2 光和电磁波谱

    • 电磁波是能量的一种,任何有能量的物体都会释放电磁波谱。它可以用 波长 (λ)、频率(v)或能量(E) 来描述,其中

    λ=c/v

    E=hv

    • 光是一种特殊的电磁辐射,可以被人眼感知。
      • 单色光 是没有颜色的光,也成为无色光。唯一属性就是它的强度或者大小,用 灰度级 来表示。单色图像常被称为 灰度图像
      • 彩色光源 的质量可以用发光强度、光通量和亮度 来表示。

    2.3 图像感知和获取

    • 图像获取方式

      • 使用单个传感器来获取图像
      • 使用条带传感器获取图像
      • 使用传感器阵列获取图像
    • 简单的图像形成模型

      用形如 f(x,y) 的二维函数来表示图像,那么:

      0<f(x,y)<

      f(x,y) 可以用两个分量来表征:

      • 入射分量 入射到被观察场景的光源照射总量,用i(x,y) 表示;
      • 反射分量 场景中物体所反射的光照总量,用r(x,y) 表示。

      所以有:

      f(x,y)=i(x,y)r(x,y),0<i(x,y)<,0<r(x,y)<1

    2.4 图像取样和量化

    • 取样和量化的基本概念

      • 取样 :对坐标值进行数字化
      • 量化 : 对幅值数字化

      数字图像的质量在很大程度上取决于取样和量化中所用的样本数灰度级

    • 数字图像表示

      用数列矩阵来表示一幅数字图像。在实数矩阵中,每个元素称为图像单元、图像元素或像素。

      对比度 一幅图像最高和最低灰度级间的灰度差为对比度。

      存储数字图像所用的比特数为:

      b=M×N×k,M=Nb=N2k

      灰度级数L=2k

    • 空间和灰度分辨率

      • 空间分辨率 :图像中可辨别的最小细节的度量。在数量上,表示每单位距离线对数和每单位距离点数是最通用的度量(必须针对空间单位来规定才有意义)。
      • 灰度分辨率 :指在灰度级中可分辨的最小变化。
    • 图像内插

      用已知数据来估计未知位置的数据处理。是基本的图像重取样方法。可以处理图像的放大和缩小。

    2.5 像素间的基本关系

    • 相邻像素

      位于坐标 (x,y) 处的像素 p 有4个水平和垂直上的相邻像素,用 N4(p) 表示;有四个对角相邻像素,用 ND(p) 表示。如果 p 位于图像边界,则某些邻点可能 落在图像外边。

    • 邻接性、连通性、区域和边界

      • 4邻接、8邻接、混合邻接
    • 距离度量

      • 欧氏距离(圆)
      • D4 城市街区距离(菱形)
      • 棋盘距离(正方形)

    2.6 常用数学工具介绍

    • 阵列和矩阵操作
    • 线性操作和非线性操作
    • 算术操作
    • 集合和逻辑操作
      • 基本集合操作
      • 逻辑操作
      • 模糊集合
    • 空间操作
      • 单像素操作
      • 邻域操作
      • 几何空间变换与图像配准
    • 向量和矩阵操作
    • 图像变换

    3.第三章

    3.1 背景知识

    • 空间域 就是简单的包含图像像素的平面。空间域处理可用以下方式表示:

    g(x,y)=T[f(x,y)],T(x,y)

    • 灰度变换函数
      s=T(r),r,s

    3.2 基本灰度变换函数

    • 图像反转

      得到灰度范围为 [0,L1] 的一幅图像的反转图像:(得到等效的照片底片)

      s=L1r

    • 对数变换

      对数变换的通用形式:

      s=clog(1+r)

      扩展图像中暗像素的值,同时压缩更高灰度级的值。反对数变换的作用与此相反。

    这里写图片描述

    • 幂律变换(伽马)变换

      基本形式:

      s=crγ

      γ<1 变亮,大于1变暗,c=γ=1 恒等变换。

    这里写图片描述
    * 分段线性变换函数
    * 对比度拉伸:扩展图像灰度级动态范围处理,因此它可以跨越记录介质和显示装置的全部灰度范围。

    根据$r,s$ 的取值,变换可以为线性函数和阈值处理函数。
    
    • 灰度级分层:突出特定图像灰度范围的亮度。有两种方法:

      • 突出范围 [A,B] 内的灰度,并将所有其他灰度降低到一个更低的级别;
      • 突出范围[A,N] 内的灰度,并保持所有其他灰度级不变。
    • 比特平面分层:突出特定比特为整个图像外观作贡献。

      • 4个高阶比特平面,特别是最后两个比特平面,包含了在视觉上很重要的大多数数据。
      • 低阶比特平面在图像中贡献更精细的灰度细节。

      得出结论:储存四个高阶比特平面将允许我们以可接受的细节来重建原图像。这样可减少50%的存储量。

    3.3 直方图的处理

    • 理论基础:若一幅图像的像素倾向于占据可能的灰度级并且分布均匀,则该图像会有高对比度的外观并展示灰色调的较大变化。

    • 直方图均衡:

      • 灰度范围为 [0,L1] 的数字图像的直方图是离散函数 h(rk)=nk,其中 rk 是第 k 级灰度值,nk 是图像中灰度为rk 的像素的个数。
      • 通过转换函数T(rk)变换,得到直方图均衡化。
      • 应用:自适应对比度增强。
    • 直方图匹配:用于处理后有特殊直方图的方法。

    • 局部直方图处理:以图像中每个像素邻域中的灰度分布为基础设计变换函数,来增强图像中小区域的细节。

    • 在图像增强中使用直方图统计:提供这样一种增强图像的方法:

      在仅处理均值和方差时,实际上直接从取样值来估计它们,不必计算直方图。这些估计被称为取样均值和取样方差。

    3.4 空间滤波基础

    • 空间滤波机理

      • 空间滤波器的组成:
      • 一个邻域
      • 对该邻域包围的图像像素执行的预定义操作

      滤波产生的是一个新像素,新像素的坐标等于邻域中心的坐标,像素的值是滤波操作的结果。

    • 空间相关与卷积

      • 相关:滤波器模板移过图像并计算每个位置乘积之和的处理。一个大小为m×n 的滤波器与一幅图像 f(x,y) 做相关操作,可表示为w(x,y)f(x,y)
      • 卷积:与相关机理相似,但滤波器首先要旋转180o 一个大小为m×n 的滤波器与一幅图像 f(x,y) 做j卷积操作,可表示为w(x,y)f(x,y)

    3.5 平滑空间滤波器

    用于模糊处理和降低噪声。

    • 平滑线性滤波器(均值滤波器)

      它使用滤波器确定的邻域内像素的平均灰度值代替图像中每个像素的值。应用:

      • 降低噪声
      • 灰度级数量不足而引起的伪轮廓效应的平滑处理
      • 去除图像的不相关细节
    • 统计排序(非线性)滤波器

      最有代表性的是中值滤波器 ,特点:

      • 将像素邻域内灰度的中值(在中值计算中,包括原像素值)代替该像素的值;
      • 对处理脉冲噪声(椒盐噪声)非常有效。

    3.6 锐化空间滤波器

    • 拉普拉斯算子:最简单的各向同性微分算子,是一个线性算子。因其为微分算子,因此强调的是图像中灰度的 突变而不是灰度级缓慢变换的区域。

    • 非锐化隐蔽和高提升滤波:从原图像中减去一部分非锐化的版本。步骤:

      • 模糊原图像
      • 从原图像减去模糊图像
      • 将模板加到原图像上
    • 梯度:图像处理中的一阶微分用梯度实现。对于函数f(x) ,在坐标(x,y) 处的梯度定义为二维列向量。它指出在位置f(x,y)f的最大变化率方向。

      应用:边缘增强。

    4.第四章

    本章主要为傅里叶变换的原理打一个基础,并介绍在基本的图像滤波中如何使用傅里叶变换。

    4.1. 基本概念

    • 傅里叶概念:任何周期函数都可以表示为不同频率的正弦和或余弦和的形式,每个正弦项和或余弦项乘以不同的系数(傅里叶级数)。
    • 傅里叶变换:在非周期函数用正弦和或余弦和乘以加权函数的积分来表示的公式。
    • 介绍复数、傅里叶级数、冲击及其取样特征、连续函数的傅里叶变换以及之前提过的卷积。

    4.2. 取样与取样函数中的傅里叶变换

    • 取样

      在连续函数f(x,y) 中模拟取样的一种方法是:用一个ΔT 单位间隔的冲击串作为取样函数去乘以f(t) .

    • 取样函数的傅里叶变换

      空间域来两个函数乘积的傅里叶变换是两个函数在频率域的卷积。

    • 取样定理

      如果以超过函数最高频率的两倍的取样来获取样本,连续的带限函数可以完全从它的样本集来恢复。

    4.3. DFT小结

    在课本上,作者给了我们详细的总结:

    这里写图片描述
    这里写图片描述
    这里写图片描述

    4.4. 频率域滤波

    • 步骤
      • 等到填充参数PQ
      • 形成大小为P×Q 的填充后的图像fp(x,y)
      • (1)x+y 乘以fp(x,y)移到其变换中心
      • 计算上一步骤的DTF,得到F(u,v)
      • 生成实的、对称的滤波函数H(u,v)
      • 得到处理后的图像gp(x,y)
      • gp(x,y) 的做上限提取M×N区域 ,得到最终的处理结果g(x,y)
    • 空间域与频率域间的纽带是卷积定理。

    4.5. 使用频率域滤波器平滑图像

    三种低通滤波器来平滑图像

    • 定义总结

    这里写图片描述

    • 特性
      • 理想低通滤波器(ILFP)
      • 特性:模糊和振铃。
      • 布特沃斯低通滤波器(BLPF)
      • 特性:随着阶数增高,其振铃和负值变明显。(一阶时无)
      • 高斯低通滤波器(GLPF)
      • 特性:无振铃

    4.6. 使用频率域滤波器锐化图像

    • 三种高通滤波器来锐化图像
      • 定义总结

    这里写图片描述
    * 特性

    * 理想高通滤波器(IHPF)
      * 有振铃
    * 布特沃斯高通滤波器(BHPF)
      * 比IHPF更平滑
    * 高斯低通滤波器(GHPF)
      * 比前两个更平滑,即使微小物体和细线条得到的结果也比较其清晰
    
    • 其他方式

      • 拉普拉斯算子
      • 钝化模板、高提升滤波和高频强调滤波
      • 同态滤波

    4.7.选择性滤波器

    处理指定频段或者频率域的小区域

    • 带阻滤波器和带通滤波器

      • 带阻滤波器
        这里写图片描述

      • 带通滤波器

      • 通过1减去带阻得到。

    • 陷波滤波器:拒绝事先定义的关于频率矩形中心的一个邻域的频率。

      • 陷波带阻滤波器

      用中心已被平移到陷波滤波中心的高通滤波器的乘积来构造。

      • 陷波带通滤波器

      通过1减去带阻得到。

    展开全文
  • OpenCV是学习数字图像处理的好工具,本专栏拟打算从对OpenCV源码的学习来研究数字图像处理中的基本操作。我开设本专栏不为别的,只希望能系统地学习OpenCV,并把我支离破碎的数字图像处理知识好好理一理。当然,最终...

    OpenCV是学习数字图像处理的好工具,本专栏拟打算从对OpenCV源码的学习来研究数字图像处理中的基本操作。我开设本专栏不为别的,只希望能系统地学习OpenCV,并把我支离破碎的数字图像处理知识好好理一理。当然,最终还是为了我的毕设啦!这是我大学的最后一个作品了,我希望能有一个好的结果。

    因此,本专栏的所有文章相当于我的学习笔记,内容仅供参考,也欢迎各位批评指正。

    OpenCV

    OpenCV是一个开源跨平台的计算机视觉函数库,它提供了各种图像处理的操作,我们可以不掌握数字图像处理的知识,就可以使用这个函数库,因此它为我们的编程提供了很大的便利。

    笔者在以前在安装OpenCV时吃了不少苦头,遇到过各种各样的问题,这里也略作总结:

    • 与VS的版本兼容问题

    由于OpenCV在更新,而VS也在更新,这就导致了二者很难保持一致。在OpenCV的路径中你会发现类似于这样的文件夹:

    opencv-vs

    其中“vc10”、“vc11”、“vc12”就分别对应VS的版本,即VS2010、VS2012、VS2013(vc14对应的是VS2015),倘若你下载的OpenCV中没有与你的VS对应版本的文件夹的话,那二者就不能兼容。

    • 程序的位数和编译模式问题

    其实这实际上是配置上的问题了。下面是VS的“Property Manager”的配置窗口:

    property-manager

    这个窗口的信息很直观,就是说你有四种配置方式:Debug编译模式+32位程序、Debug编译模式+64位程序、Release编译模式+32位程序、Release编译模式+64位程序。所以配置的时候,你需要注意选择合适的路径和动态链接库,如你想配置Debug编译模式+32位程序,你就需要选择x86的文件夹和后面带有d的动态链接库了。

    x86

    debug

    当然,配置正确了也不能保证万事大吉,你还需要在VS中设置编译模式:

    build-mode

    这里需要和前面的配置保持一致。

    上面我就总结了两种比较常见也比较致命的问题,其他细节问题这里就不赘述了。

    在本专栏中,我拟打算学习一下OpenCV中某些部分的源码,另外也会介绍一些函数的原理,当然这就很可能涉及到数字图像处理方面的知识了。

    数字图像处理

    关于数字图像处理的介绍可以参考经典的图像处理的图书,如冈萨雷斯的《数字图像处理》一书。其中这样介绍数字图像处理:

    数字图像处理是指借助于数字计算机来处理数字图像。注意,数字图像是由有限数量的元素组成,每个元素都有一个特定的位置和幅值。

    其中,对数字图像处理的历史、相关领域等做了详细的介绍,感兴趣的可以去看看。

    专栏图片

    专栏还需要上传一张图片,我不知道要选什么图片,就将OpenCV安装路径中的几个图片经过缩放、组合成了一张长图上传到了上面。

    // column_intro.cpp : Defines the entry point for the console application.
    //
    
    #include "stdafx.h"
    #include <iostream>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    
    using namespace cv;
    using namespace std;
    
    int main(int argc, char **argv)
    {
        if (argc < 2)
        {
            cout << "No arguments found!" << endl;
            return -1;
        }
        //cout << argc << endl;
        float frame_wd = 1110, frame_hg = 170;
        Mat frame = Mat::zeros(frame_hg, frame_wd, CV_8U);
    
        Mat scale_mat = Mat::zeros(2, 3, CV_32FC1);
        float scale_factor;
        Mat img, rst;
        // the distance of every image move in loop
        float pitch = 0.0;
    
        for (int i = 0; i < argc - 1; i++)
        {
            img = imread(argv[i + 1], CV_LOAD_IMAGE_GRAYSCALE);
            // get scale factor
            scale_factor = frame_hg / img.size().height;
            // get scale matrix
            scale_mat.at<float>(0) = scale_factor;
            scale_mat.at<float>(4) = scale_factor;
            // get size of result
            Size sz(img.size().width * scale_factor,
                img.size().height * scale_factor);
            warpAffine(img, rst, scale_mat, sz);
    
            if (pitch + rst.size().width < frame.size().width)
            {
                rst.copyTo(frame(Rect(pitch, 0, rst.size().width, frame_hg)));
                pitch += rst.size().width;
            }
            else
            {
                rst(Rect(0, 0, frame_wd - pitch, frame_hg)).
                    copyTo(frame(Rect(pitch, 0, frame_wd - pitch, frame_hg)));
            }
        }
    
        // write the result into file
        imwrite("result.png", frame);
        return 0;
    }

    在我的github或者gitee里可以下载该代码。

    很久没有写博客了。作为我的2018年第一篇博客,内容可能有点儿仓促,后面我会根据实际需要进行适当改动。

    参考资料

    1. 数字图像处理,冈萨雷斯,电子工业出版社
    2. 维基百科:OpenCV
    展开全文
  • 一、绪论以及储备知识1、数字图像处理何谓数字图像处理数字图像处理就是指借助于数字计算机来处理图像。因为计算机只能处理离散的数字量,所以一幅要被计算机处理的图像也必须是离散的。这幅图像有很多个元素组成...

    一、绪论以及储备知识

    1、数字图像处理

    何谓数字图像处理?数字图像处理就是指借助于数字计算机来处理图像。因为计算机只能处理离散的数字量,所以一幅要被计算机处理的图像也必须是离散的。这幅图像有很多个元素组成,这些元素就是我们通常所说的像素!

    2、视觉感知要素

    人的眼睛能看到东西是因为人眼里面有光感受器,这些感受器可以分为两类,也就是锥状体和杆状体。锥状体主要位于视网膜中的中央凹的部分,对颜色及其敏感,被称为白昼视觉或亮视觉。杆状体的数量更多,分布在视网膜表面,它用来给出视野内的总体图像,对低照明度敏感,也被称为暗视觉或微光视觉。大致可以理解为人眼中的锥状体=CCD(电荷耦合元件,成像芯片)。

    光是一种特殊的电磁辐射,它的电磁波谱从左到右依次为伽马射线、X射线、紫外线、可见光谱、红外线、微波、无线电波。灰度级:通常用来表示单色光的强度,单色光是没有颜色的光。从黑到白的单色光的度量范围成为灰度级。

    3、图像的取样和量化

    我们把一幅连续的图像放在一个即X、Y轴和竖轴构成的坐标系中(以后我们会知道这叫做空间域),X和Y用来表示这幅图像中点的坐标,竖轴用来表示该点的灰度值即强度值。计算机要进行处理必须先离散化,我们对坐标值进行数字化称为取样,对幅值数字化称为量化。所以,一幅图像可以看做是很多个离散的数字量构成的,即可以用一个矩阵来表示一幅图像。注意,数字图像的原点位于左上角,其中正X轴往下延伸,正Y轴往右延伸。

    对图像坐标数字化的值通常用M,N表示,灰度级数用L表示,灰度级通常取2的整数次幂,即L=2^K。存储一幅数字图像的比特数为b=M*N*K。我们将一幅图像中的最高和最低灰度级间的灰度差定义为对比度,最高和最低灰度的比称为动态范围!

    当一幅图像有2^K个灰度级时,实际上通常称这幅图像为K比特图像,例如8比特图像有256个可能的离散灰度值。

    4、像素间的基本关系

    位于坐标(X,Y)处的像素p有四个水平和垂直的像素,坐标为(x+1,y),(x-1,y),(x,y+1),(x,y-1),这组像素称为p的4邻域,用N4(p)表示。p的4个对角相邻像素坐标是(x+1,y+1),(x+1,y-1),(x-1,y-1),(x-1,y+1),用ND(p)表示。这些点与4个邻点一起称为p的8邻域,用N8(p)表示。

    假设两个像素坐标分别为(x,y),(s,t)
    它们之间的距离度量有一下几种形式:
    a.欧式距离:同解析几何中的定义一样,在这样的定义下,距(x,y)等距离的点形成一个圆的轮廓(近似的)。

    b.D4距离(也叫城市街区距离,想象一下城市街区之间没有斜边可以走):定义为|x-s|+|y-t|,在这样的定义下,距(x,y)等距离的点形成一个菱形。

    c.D8距离(棋盘距离):其定义为max(|x-s|,|y-t|),在这种定义下,距(x,y)等距离的点形成一个正方形。


    注:如果有什么错误的地方欢迎大家指正!让我们一块共同学习,本人研究生阶段主攻方向为图像去雾,有兴趣的可以加我的QQ:2256524804,大家可以一块学习,稍后我会慢慢更新!




                

    展开全文
  • 经历了半年多的学习,图像处理总算入门了,做了个小项目,将之前所学的都用到了。...如果没有,我推荐中科院研究生院刘定生老师的数字图像处理与分析(视频),这位老师上课引人入胜,值得推荐。其

    经历了半年多的学习,图像处理总算入门了,做了个小项目,将之前所学的都用到了。虽不敢说精通,但该掌握的工具都掌握了,包括图像算法。图像处理虽说不难,但刚开始入门,还是不易的,我也走了不少弯路,希望借鉴给有缘人。

    首先,搞图像处理,熟悉图像算法是必经之路,如果上过图像处理这门课的话,再好不过。如果没有,我推荐中科院研究生院刘定生老师的数字图像处理与分析(视频),这位老师上课引人入胜,值得推荐。其次,在这个阶段,配套的书籍自然是《冈萨雷斯版数字图像处理》这本书,最好同时用matlab软件,仿真每一个图像算法案例,推荐《matlab宝典》。大概花一个月时间,基本的图像算法,相信你已经学完了。第二阶段,希望你再次认真学习C++,推荐《C++ Primer》,因为以后我们开发程序,都是基于类的开发,什么虚函数,类的继承、多态、命名空间、文件的输入输出、模板STL都应非常熟悉。在这之后,VC++你也应该掌握,圣经级的书籍自然是孙鑫的《VC++深入详解》,大概花一个时间,将书上每一个代码都敲一边,消息的映射机制,尤其要非常熟悉,MFC的框架结构也应明白。在此阶段,有时间的话,看看中科院研究生院杨力祥老师的高级windows程序设计(视频),这些代码开发都是基于VC6.0的。

    以上如果你都搞明白了,就进入重头戏了。将图像处理算法和代码结合起来,进行开发。首推北航老师谢凤英, 赵主培主编的《Visual C++数字图像处理》这本书,将上面的代码都敲一边,你会有不一样的感觉。

    最后一个阶段,因为在实际的开发过程中,不可能每一基本算法都要自己写,前人已经写好了。所以推荐大家使用opencv这个开源库,他实现了大多数图像算法,实际开发中,用他的函数就够了,推荐书籍《学习opencv》,《opencv教程》,视频自然是庞峰老师的视频,大家可以在opencv中文论坛上免费观看。至此,该掌握的工具你已经掌握了,但是将MFC和opencv结合起来开发,最好是要有一个项目,你会理解许多。

    最后,我想说MFC开发已经过时了(俗称没饭吃),但是他的那套消息机制还是非常有用的,建议大家界面开发的用C#或QT,代码编写结合opencv,这样你会轻松很多。在图像处理领域中,真正得到大牛都是搞算法的,建议大家在看看计算机视觉和模式识别、机器学习方面的书籍。至此,以上就是我的感悟。

    展开全文
  • 数字图像处理学习路线大体介绍 这里默认读者已经具备卷积,傅立叶变换等基础知识 图像增强 直方图增强 空域增强 频域增强 图像复原 退化模型 逆滤波 维纳滤波 图像色彩模型和彩色图像处理 彩色模型 彩色图像...

    数字图像处理学习路线大体介绍

    这是中国科学院大学人工智能学院的图像课大体重要内容

    图像增强

    1. 直方图增强
    2. 空域增强
    3. 频域增强

    图像去噪

    1. 空域去噪
    2. 频域去噪

    图像复原

    1. 退化模型
    2. 逆滤波
    3. 维纳滤波

    图像色彩模型和彩色图像处理

    1. 彩色模型
    2. 彩色图像处理

    图像压缩

    小波变换与小波去噪

    1. 小波变换基础知识
    2. 小波去噪
    3. BM3D算法等小波方面算法介绍

    形态学处理

    1. 膨胀腐蚀开闭
    2. 击中击不中
    3. 细化
    4. 骨架提取
    5. 裁剪

    图像切割

    卷积,傅立叶等理解难点

    1. 卷积
    2. 采样定理
    3. 傅立叶变换关键性质

    图像处理杂项

    1. 人类视觉系统
    2. 除傅里叶基以外的其他正交基
    3. 正交变换矩阵知识

    接下来后面会按照这个顺序依次介绍包含所有python实现,带你一步步喜欢上图像处理!!!如果觉得博主写的还行的老哥们请点个赞。
    下一篇:数字图像处理学习方法的一点建议
    下一篇:数字图像处理python实现-图像增强篇

    展开全文
  • 文章目录一、数字图像处理的概念 一、数字图像处理的概念 图像:图像可以定义为一个二维函数f(x,y),其中x和y是空间坐标,而f在任意坐标(x,y)处的幅度称为图像在该点处的亮度或者灰度。 数字图像:指图像f(x,y)...
  • (注:本文代码大部分可从《数字图像处理 第三版》中找到)使用软件:MATLAB R2018a学习前提:了解matlab的GUI界面的每个按钮参考资料:《数字图像处理 第三版》,CSDN博客使用初音图片P站画师uid:1589657。...
  • 数字图像处理入门

    2015-07-24 15:56:42
    一、数字图像处理 什么是数字图像处理数字图像处理又称为计算机图像处理,它将模拟的图像信号转换成离散的数字信号并利用计算机对其进行处理的过程。它的输入是原始图像,输出是改善后的图像或者是从图像中提取出...
  • 数字图像处理技术

    2018-11-25 19:28:31
    数字图像处理技术 所谓数字图像处理,是指利用计算机对图像进行分析、加工、和处理,使其满足视觉、心理或其他要求的技术,主要有去除噪声、增强、复原、分割、提取特征等处理的方法。20 世纪 50 年代,电子计算机...
  •  主要记载学习数字图像处理的基本知识,仅供参考。 目录 一、什么是图像处理? 二、图像的数字化表达 三、数字图像处理的基本知识 一、什么是图像处理?  图像处理就是对图像信息进行加工处理,满足实际的...
  • 数字图像处理方法的重要性源于两个主要应用领域: 改善图像信息以便解释。 为存储、传输和表示而对图像数据进行处理,以便于机器自动理解。 图像处理(image processing): 用计算机对图像...
  • 数字图像处理-冈萨雷斯》笔记第一章 绪论图像处理实例:伽马射线成像、X射线成像、紫外波段成像、可见光以及红外线成像、微波波段成像、无线电波成像、声波成像。图像处理的基本步骤:图像获取、滤波与增强、图像...
  • 本专栏将以学习笔记形式对数字图像处理的重点基础知识进行总结整理,欢迎大家一起学习交流! 专栏链接:数字图像处理学习笔记 做图像增强的原因 在图像形成的过程中,存在很多因素影响图像的清晰度 如:光照...
  • 数字图像处理+AI

    2017-03-20 21:51:39
    因此想去学习数字图像处理去了! 但我东搞搞,西搞搞,也不成样子呀! 听一个老人说,我做bsp出身,应该朝系统工程师方向演进!是呀,系统工程师,就是做系统! 做系统解决方案!啥职业也需要不停的学习呀! ...
  • 学习数字图像处理博客索引 更多细节参考:http://face2ai.com/categories/数字图像处理/ 如对计算机视觉,机器学习,深度学习以及其数学原理有兴趣可以通过下面二维码添加博客管理员,进入讨论群,讨论博客中的...
  • 在这个看脸的时代,颜值... 随着台式计算机的处理能力日益增强,各种图像拍摄的设备(例如平板电脑、手机摄像头、数码相机、扫描仪等)的普及,以及互联网的加持,使得数字图像处理变得与文字处理一样普及。本书就数字
  • 噪声表现形式:噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素...另外,在图像处理的某些环节当输入的像对象并不如预想时也会在结果图像中引入噪声 噪声对数字图像的影响:对于数字图像信号,噪声表为或大
  • 数字图像处理(MATLAB)(第二版) 冈萨雷斯 主要用来记录自己的学习过程,相关实验内容,便于日后查找相关知识点及复习所用 第二章 灰度变换和空间滤波 本章重点讨论两类空间域处理方法:亮度(或灰度)变换与...
  • 花了点时间整理了一下数字图像处理知识体系,从宏观上把握图像处理,使自己的学习思路就更加清晰。 1.本文大部分内容来自:http://blog.csdn.net/byxdaz/article/details/4375228 2.有些内容待添加,特别是opencv...
1 2 3 4 5 ... 20
收藏数 84,642
精华内容 33,856