图像处理中的傅里叶逆变换

2018-08-14 19:19:56 aidem_brown 阅读数 809

from:https://www.cnblogs.com/tenderwx/p/5245859.html

1.理解二维傅里叶变换的定义

1.1二维傅里叶变换

二维Fourier变换:

逆变换:

1.2二维离散傅里叶变换

一个图像尺寸为M×N的 函数的离散傅里叶变换由以下等式给出:


其中 和。其中变量u和v用于确定它们的频率,频域系统是由所张成的坐标系,其中和用做(频率)变量。空间域是由f(x,y)所张成的坐标系。可以得到频谱系统在频谱图四角处沿和方向的频谱分量均为0。

离散傅里叶逆变换由下式给出:

令R和I分别表示F的实部和需部,则傅里叶频谱,相位角,功率谱(幅度)定义如下:


1.3用FFT计算二维离散傅里叶变换

二维离散傅里叶变换的定义为:

    

二维离散傅里叶变换可通过两次一维离散傅里叶变换来实现:

1)作一维N点DFT(对每个m做一次,共M次)

2)作M点的DFT(对每个k做一次,共N次)


这两次离散傅里叶变换都可以用快速算法求得,若M和N都是2的幂,则可使用基二FFT算法,所需要乘法次数为                                    

 

而直接计算二维离散傅里叶变换所需的乘法次数为(M+N)MN,当M和N比较大时用用FFT运算,可节约很多运算量。

1.3图像傅里叶变换的物理意义

图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅里叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅里叶变换就表示f的频谱。从纯粹的数学意义上看,傅里叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅里叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅里叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数。

傅里叶逆变换是将图像的频率分布函数变换为灰度分布函数傅里叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,通常用一个二维矩阵表示空间上各点,记为z=f(x,y)。又因空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就必须由梯度来表示,这样我们才能通过观察图像得知物体在三维空间中的对应关系。

傅里叶频谱图上我们看到的明暗不一的亮点,其意义是指图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅里叶变换后的频谱图,也叫功率图,我们就可以直观地看出图像的能量分布:如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小);反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的、边界分明且边界两边像素差异较大的。

对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰。一幅频谱图如果带有正弦干扰,移频到原点上就可以看出,除了中心以外还存在以另一点为中心、对称分布的亮点集合,这个集合就是干扰噪音产生的。这时可以很直观的通过在该位置放置带阻滤波器消除干扰。

2.二维傅里叶变换有哪些性质?

2.1二维离散傅里叶变换的性质

1)分离性

二维离散傅里叶变换具有分离性

  

分离性质的主要优点是可借助一系列一维傅里叶变换分两步求得。第1步,沿着的每一行取变换,将其结果乘以1/N,取得二维函数;第2步,沿着的每一列取变换,再将结果乘以1/N,就得到了。这种方法是先行后列。如果采用先列后行的顺序,其结果相同。

如图:


 

对逆变换f(x,y)也可以类似地分两步进行。

2)平移性

傅里叶变换和逆变换对的位移性质是指:

 

由乘以指数项并取其乘积的傅立叶变换,使频率平面的原点位移至。同样地,以指数项乘以并取其反变换,将空间域平面的原点位移至当N/2时,指数项为:

即为

这样,用(x+y)乘以就可以将的傅里叶变换原点移动到N*N频率方阵的中心,这样才能看到整个谱图。另外,对的平移不影响其傅里叶变换的幅值。

此外,与连续二维傅里叶变换一样,二维离散傅里叶变换也具有周期性共轭对称性、线性、旋转性、相关定理、卷积定理、比例性等性质。这些性质在分析及处理图像时有重要意义。

2.2二维离散傅里叶变换图像性质

1、图像经过二维傅里叶变换后,其变换系数矩阵具有如下性质:若变换矩阵原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅里叶变换矩阵的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅里叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。

2、图像灰度变化缓慢的区域,对应它变换后的低频分量部分;图像灰度呈阶跃变化的区域,对应变换后的高频分量部分。除颗粒噪音外,图像细节的边缘、轮廓处都是灰度变化突变区域,它们都具有变换后的高频分量特征。

 

3.任给一幅图像,对其进行二维傅里叶变换和逆变换

原图

二维傅里叶变换

逆变换

频谱图

原图

加入高斯躁声

加入椒盐躁声

 

对高斯躁声中值滤波

对椒盐躁声中值滤波

 

对高斯躁声算术均值滤波

对椒盐躁声算术均值滤波

 

4.附录

4.1matlab代码

1)程序一

复制代码

 1 [i,lcmp]=imread('F:/123.jpg');%=======读取图像 显示图像
 2 
 3 subplot(2,2,1),imshow(i,lcmp);
 4 
 5 title('original');
 6 
 7 ii=im2double(i); %=====将图像矩阵类型转换为double(图像计算很多是不能用整型的),没有这个会报错!! ,如果不用这个就必须转化为灰度图!
 8 
 9 i1 = fft2(ii); %======傅里叶变换
10 
11 i2 =fftshift(i1); %======将变换的频率图像四角移动到中心(原来良的部分在四角 现在移动中心,便于后面的处理)
12 
13 i3=log(abs(i2)); %=====显示中心低频部分,加对数是为了更好的显示
14 
15 subplot(2,2,2),imshow(i3,[]);
16 
17 title('Fourier');
18 
19 map=colormap(lcmp); %===取色谱
20 
21 imwrite(i3,map,'f:/ffttank.bmp'); %===将上面i3输入到ffttank文件中
22 
23 i5 = real(ifft2(ifftshift(i2))); %===频域的图反变换到空域 并取实部
24 
25 i6 = im2uint8(mat2gray(i5)); %===取其灰度图
26 
27 imwrite(i6,map,'f:/tank2.bmp','bmp'); %===利用灰度图和原来取得颜色模板 还原图像
28 
29 subplot(2,2,3),imshow(i6);
30 
31 title('anti-Fourier');
32 
33 i7=rgb2gray(i);
34 
35 i8=fft2(i7);%===对灰色图才能归一化。因为那是2维矩阵,彩色图是3维矩阵,需要转化为2维灰图
36 
37 m=fftshift(i8); %直流分量移到频谱中心
38 
39 %RR=real(m); %取傅立叶变换的实部
40 
41 %II=imag(m); %取傅立叶变换的虚部
42 
43 A=abs(m);%计算频谱幅值
44 
45 %A=sqrt(RR.^2+II.^2);
46 
47 A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化
48 
49 subplot(2,2,4),imshow(A); %显示原图像
50 
51 colorbar; %显示图像的颜色条
52 
53 title('FFT spectrum'); %图像命名
54 
55  

复制代码

 

 

2)程序二

复制代码

 1 m=imread('F:/123.jpg');
 2 
 3 M=rgb2gray(m); %==滤波函数都是对二维灰度图,Tif可直接滤波
 4 
 5 subplot(3,3,1)
 6 
 7 imshow(M);%显示原始图像
 8 
 9 title('original')
10 
11 P1=imnoise(M,'gaussian',0.02); %加入高斯躁声
12 
13 subplot(3,3,2)
14 
15 imshow(P1) %加入高斯躁声后显示图像
16 
17 title('gaussian noise');
18 
19 P2=imnoise(M,'salt & pepper',0.02); %=加入椒盐躁声
20 
21 subplot(3,3,3)
22 
23 imshow(P2) %%加入椒盐躁声后显示图像
24 
25 title('salt & pepper noise');
26 
27 g=medfilt2(P1); %对高斯躁声中值滤波
28 
29 subplot(3,3,5)
30 
31 imshow(g)
32 
33 title('medfilter gaussian')
34 
35 h=medfilt2(P2); %对椒盐躁声中值滤波
36 
37 subplot(3,3,6)
38 
39 imshow(h)
40 
41 title('medfilter salt & pepper noise')
42 
43 l=[1 1 1 %对高斯躁声算术均值滤波
44 
45 1 1 1
46 
47 1 1 1];
48 
49 l=l/9;
50 
51 k=conv2(P1,l);
52 
53 subplot(3,3,8)
54 
55 imshow(k,[])
56 
57 title('arithmeticfilter gaussian')
58 
59 %对椒盐躁声算术均值滤波
60 
61 d=conv2(P2,l);
62 
63 subplot(3,3,9)
64 
65 imshow(d,[])
66 
67 title('arithmeticfilter salt & pepper noise')
68 
69  

复制代码

 

4.2参考文献

[1]孟凡文, 吴禄慎.基于FTP的二维傅里叶变换的研究.激光与红外. 第38卷第9期 2008年9月       

[2] 董健,邓国辉,李金武. 基于二维傅里叶变换实现图像变换的研究. 福建电脑. 2015年第 9期

2019-12-04 00:43:18 qq_35306281 阅读数 134

傅里叶变换在图像处理中应用十分广泛。
本文主要是通过实现傅里叶正逆变换,熟悉时域到频域,频域到时域的换算过程。
正变换公式:

在这里插入图片描述逆变换
在这里插入图片描述

#include <stdio.h>
#include <complex>
#include <stdlib.h>
#include <vector>
#include <assert.h>
#include <opencv2/opencv.hpp>

#define PI 3.1415926
template<class T>
double static_cast_double(T a)
{
	return static_cast<double>(a);
}
template<class T>
float static_cast_float(T a)
{
	return static_cast<float>(a);
}
template<class T>
unsigned char static_cast_uchar(T a)
{
	return static_cast<unsigned char>(a);
}

class dft{
public:
	dft(){};
	virtual ~dft(){};
public:
	cv::Mat dt(const cv::Mat& src, bool backwards = false);
	cv::Mat reduce(const cv::Mat& ft);
protected:
	cv::Mat pt(const cv::Mat& src);
	cv::Mat bt(const cv::Mat& src);
};

cv::Mat dft::pt(const cv::Mat& src)
{

	int M = src.rows;
	int N = src.cols;
	int u, v, m, n;

	std::complex<double> ci{ 0, 1 };
	std::vector<float> real_t;
	std::vector<float> imag_t;
	for (u = 0; u < M; u++)
		for (v = 0; v < N; v++)
		{
			std::complex<double> sum_0(0.0, 0.0);
			for (m = 0; m < M; m++)
			{
				std::complex<double> sum_1(0.0, 0.0);
				for (n = 0; n < N; n++)
				{
					sum_1 += std::exp(-2 * PI*n*v / N*ci) * static_cast_double(src.at<uchar>(m, n));
				}
				sum_1 /= (double)N;
				sum_0 += sum_1 * std::exp(-2 * PI*m*u / M*ci);
			}
			std::complex<double> tmp = sum_0 / (double)M;
			real_t.push_back(static_cast_float(tmp.real()));
			imag_t.push_back(static_cast_float(tmp.imag()));
		}
	cv::Mat s1(real_t);
	s1 = s1.reshape(0, M);
	cv::Mat s2(imag_t);
	s2 = s2.reshape(0, M);
	cv::Mat s[2] = { s1, s2 };
	cv::Mat dst;
	cv::merge(s, 2, dst);
	return dst;
}

cv::Mat dft::bt(const cv::Mat& ft)
{
	assert(ft.channels() == 2);
	int M = ft.rows;
	int N = ft.cols;
	double M_ = static_cast_double(M);
	double N_ = static_cast_double(N);

	std::vector<cv::Mat> ft_mats;
	cv::split(ft, ft_mats);
	int m, n, u, v;
	std::complex<double> ci{ 0.0, 1.0 };
	std::vector<uchar> real_t;
	for (m = 0; m < M; m++)
	for (n = 0; n < N; n++)
	{
		std::complex<double>sum{ 0.0, 0.0 };
		for (u = 0; u < M; u++)
		for (v = 0; v < N; v++)
		{
			float rt = ft_mats[0].at<float>(u, v);
			float it = ft_mats[1].at<float>(u, v);
			std::complex<double> temp{ rt, it };
			sum += temp * std::exp(2 * PI*(m*u / M_ + n*v / N_));
		}
		real_t.push_back(static_cast_uchar(sum.real()));
	}
	cv::Mat real(real_t);
	real = real.reshape(0, M);
	return real;
}

cv::Mat dft::reduce(const cv::Mat& ft)
{
	assert(ft.channels() == 2);
	std::vector<cv::Mat> ft_mats;
	cv::split(ft, ft_mats);
	cv::magnitude(ft_mats[0], ft_mats[1], ft_mats[0]);
	cv::Mat magnitudeImage = ft_mats[0];
	magnitudeImage += cv::Scalar::all(1);
	cv::log(magnitudeImage, magnitudeImage);
	
	//magnitudeImage.convertTo(magnitudeImage, CV_8UC1, 255, 0);

	int cx = magnitudeImage.cols / 2;
	int cy = magnitudeImage.rows / 2;
	cv::Mat q0(magnitudeImage(cv::Rect(0, 0, cx, cy)));
	cv::Mat q1(magnitudeImage(cv::Rect(cx, 0, cx, cy)));
	cv::Mat q2(magnitudeImage(cv::Rect(0, cy, cx, cy)));
	cv::Mat q3(magnitudeImage(cv::Rect(cx, cy, cx, cy)));

	cv:: Mat tmp;
	q0.copyTo(tmp);
	q3.copyTo(q0);
	tmp.copyTo(q3);

	q1.copyTo(tmp);
	q2.copyTo(q1);
	tmp.copyTo(q2);

	cv::normalize(magnitudeImage, magnitudeImage, 0, 1, cv::NORM_MINMAX);

	return magnitudeImage;
}

cv::Mat dft::dt(const cv::Mat& src, bool backwards)
{
	return backwards ? bt(src) : pt(src);
}

int main(int argc, char** argv)
{
	cv::Mat src = cv::imread("apple.jpg", 0);
	cv::resize(src, src, cv::Size(src.cols / 8, src.rows / 8));

	dft* dftops = new dft();

	cv::Mat ft = dftops->dt(src);

	ft = dftops->reduce(ft);

	cv::imshow("fft.jpg", ft);
	cv::waitKey(0);
	delete dftops;
	return 0;
}

在这里插入图片描述

2018-05-03 16:40:43 ssqqssqq 阅读数 2666

分数阶傅里叶变换在信号检测与图像处理中的应用研究(李琼)

文章地址:paper
摘要:分数阶傅里叶变换是传统傅里叶变换的一种广义形式,很适合处理非平稳信号,尤其是chirp类信号,具有良好的时频域特性。通过对分数域中的图像能量和幅度相位分布的分析,将其应用到图像增强中,有效的提高图像的质量。

发展历史

  • Wiener等人最早开始研究分数阶傅里叶变换,他对傅里叶变换中的特征值进行了修正,从而使得其比普通傅里叶变换具有更加完善的形式,是分数阶傅里叶变换的最初理论。
  • 1937年, Condon 独自研究了分数阶傅里叶变换的基本概念,同时也是第一个直接研究FRFT定义的人;
  • 1961年,Bargmann讨论了FRFT的基本定义,并提出FRFT的两种等价的定义形式:Hermit多项式和积分变换;
  • 1980年,Namias从特征值域特征函数的角度,重新给出了FRFT的定义,并把FRFT定义为传统傅里叶变换的分数幂形式
  • 1993年,Mendlovic,Lohamann和Ozaktas给出了FRFT的光学实现并将其广泛应用于光学领域中,但因缺乏快速算法,始终未受到重视;
  • 1993年,Almeida提出FRFT可以解释维时频平面旋转;
  • 1996年,Ozaktas提出一种计算量与FFT相当的快速算法以后,FRFT才广泛引起研究者的注意

特性

  • 将信号从时域变换到时频平面,同时反映信号的时域和频域信息,有利于全面分析信号的局部细微特征
  • 是一种线性变换,用分数域中的单一变量表示信号的时频信息且没有交叉项的干扰
  • 可看作是信号在时频面上的坐标轴绕原点逆时针转动任意角度后所形成分数域上的表示
  • 保留傅里叶变换的优良特性,而且还兼有自身独特的优势
  • 线性,旋转相加性,可逆性,酉性,Parseval关系式、Wigner,时移特性,频移特性、尺度特性

二维分数阶傅里叶变换

二维离散分数阶傅里叶变换可分别由x,y方向的一维离散分数阶傅里叶变换共同实现,具体实现步骤:

  • 先对二维离散信号f的列向量做一维离散FRFT,得到F1
  • 对F1的行向量做一维离散FRFT,得到F2
  • 对F2转置,得到f的二维离散分数阶傅里叶变换

基于分数阶傅里叶变换的图像分析

任意阶次的FRFT都同时包含不同程度的时频信息,将其用于图像分析中,有助于在时频面上更加深入的分析图像的能量分布,幅度和相位信息。

分数阶变换域中图像的能量分布

分数域中图像能量分布的特点:从四周向中心聚积,聚积程度取决于阶次p接近傅里叶变换的程度(p=1)。
分布规律:

  • 随着p的增大,能量越来越集中,当p=0.7左右,分数域的能量在此中心区域已经达到了90%以上。
  • FRFT包含图像的时频信息,随着p的改变,能量在时频域的分配也发生变换,当p<0.5时,将近又50%的能量分散在时域,当p>0.5时,频域能量分布呈明显上升趋势,当p=1时,图像的能量聚集性达到最强。

分数阶傅里叶变换域中的图像的幅度和相位信息

相位:

  • 当阶次较小时(p趋近于0),可以明显看到图片的一些轮廓特征,随着变换阶次 不断增大,纹理信息逐渐减少。表明相位信息所包含的时域信息随着变换阶次的增大而减少,而频域信息随着变化阶次的增大而增大。

幅度:
当阶次较小时很明显的能看清图像的轮廓和细节信息,随着阶次变大,图像逐渐变得模糊,能量也越来越集中。

分数阶傅里叶逆变换之后的幅度和相位

相位:
从不同相位恢复的图像中均可以明显观察到原图像的轮廓边缘信息,随着阶次逐渐变大,图像的边缘信息越来越清晰,可理解为图像经过了不同截止频率的高通滤波器。
幅度:
从幅度恢复的图像中看不出与原图像时域相关的信息,图像的边缘信息主要包含在相位信息中,背景信息主要包含在幅度信息中。

在图像增强中的应用

分数阶本身具有丰富的时频信息和灵活的参数配置

图像增强

目的:增强图像中感兴趣的信息,减少或去除不感兴趣信息的处理方法,改善图像质量、增大不同物体特征的对比度、丰富细节信息、使得有用信息看起来更加清晰,更加容易识别。主要分为空域增强和频域增强:
空域增强:点运算(灰度变换法、直方图均衡法)、领域运算(图像锐化、图像平滑)
频域增强:低频和高频滤波、带通滤波、小波变换(优点:全局性,对图像的所有像素进行处理,能够更好的体现图像的整体特性)
分数阶傅里叶变换变换后图像边缘保持能力更高。

2019-04-23 16:24:29 Eastmount 阅读数 19613

该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~

该系列在github所有源代码:https://github.com/eastmountyxz/ImageProcessing-Python
PS:请求帮忙点个Star,哈哈,第一次使用Github,以后会分享更多代码,一起加油。

同时推荐作者的C++图像系列知识:
[数字图像处理] 一.MFC详解显示BMP格式图片
[数字图像处理] 二.MFC单文档分割窗口显示图片
[数字图像处理] 三.MFC实现图像灰度、采样和量化功能详解
[数字图像处理] 四.MFC对话框绘制灰度直方图
[数字图像处理] 五.MFC图像点运算之灰度线性变化、灰度非线性变化、阈值化和均衡化处理详解
[数字图像处理] 六.MFC空间几何变换之图像平移、镜像、旋转、缩放详解
[数字图像处理] 七.MFC图像增强之图像普通平滑、高斯平滑、Laplacian、Sobel、Prewitt锐化详解

前文参考:
[Python图像处理] 一.图像处理基础知识及OpenCV入门函数
[Python图像处理] 二.OpenCV+Numpy库读取与修改像素
[Python图像处理] 三.获取图像属性、兴趣ROI区域及通道处理
[Python图像处理] 四.图像平滑之均值滤波、方框滤波、高斯滤波及中值滤波
[Python图像处理] 五.图像融合、加法运算及图像类型转换
[Python图像处理] 六.图像缩放、图像旋转、图像翻转与图像平移
[Python图像处理] 七.图像阈值化处理及算法对比
[Python图像处理] 八.图像腐蚀与图像膨胀
[Python图像处理] 九.形态学之图像开运算、闭运算、梯度运算
[Python图像处理] 十.形态学之图像顶帽运算和黑帽运算
[Python图像处理] 十一.灰度直方图概念及OpenCV绘制直方图
[Python图像处理] 十二.图像几何变换之图像仿射变换、图像透视变换和图像校正
[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽运算
[Python图像处理] 十四.基于OpenCV和像素处理的图像灰度化处理
[Python图像处理] 十五.图像的灰度线性变换
[Python图像处理] 十六.图像的灰度非线性变换之对数变换、伽马变换
[Python图像处理] 十七.图像锐化与边缘检测之Roberts算子、Prewitt算子、Sobel算子和Laplacian算子
[Python图像处理] 十八.图像锐化与边缘检测之Scharr算子、Canny算子和LOG算子
[Python图像处理] 十九.图像分割之基于K-Means聚类的区域分割
[Python图像处理] 二十.图像量化处理和采样处理及局部马赛克特效
[Python图像处理] 二十一.图像金字塔之图像向下取样和向上取样

前面一篇文章我讲解了Python图像量化、采样处理及图像金字塔。本文主要讲解图像傅里叶变换的相关内容,在数字图像处理中,有两个经典的变换被广泛应用——傅里叶变换和霍夫变换。其中,傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪、图像增强等处理。基础性文章,希望对你有所帮助。同时,该部分知识均为杨秀璋查阅资料撰写,转载请署名CSDN+杨秀璋及原地址出处,谢谢!!

1.图像傅里叶变换
2.Numpy实现傅里叶变换
3.Numpy实现傅里叶逆变换
4.OpenCV实现傅里叶变换
5.OpenCV实现傅里叶逆变换


PS:文章参考自己以前系列图像处理文章及OpenCV库函数,同时参考如下文献:
《数字图像处理》(第3版),冈萨雷斯著,阮秋琦译,电子工业出版社,2013年.
《数字图像处理学》(第3版),阮秋琦,电子工业出版社,2008年,北京.
《OpenCV3编程入门》,毛星云,冷雪飞,电子工业出版社,2015,北京.
百度百科-傅里叶变换
网易云课堂-高登教育 Python+OpenCV图像处理
安安zoe-图像的傅里叶变换
daduzimama-图像的傅里叶变换的迷思----频谱居中
tenderwx-数字图像处理-傅里叶变换在图像处理中的应用
小小猫钓小小鱼-深入浅出的讲解傅里叶变换(真正的通俗易懂)


一.图像傅里叶变换原理

傅里叶变换(Fourier Transform,简称FT)常用于数字信号处理,它的目的是将时间域上的信号转变为频率域上的信号。随着域的不同,对同一个事物的了解角度也随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。同时,可以从频域里发现一些原先不易察觉的特征。傅里叶定理指出“任何连续周期信号都可以表示成(或者无限逼近)一系列正弦信号的叠加。”

下面引用李老师 “Python+OpenCV图像处理” 中的一个案例,非常推荐同学们去购买学习。如下图所示,他将某饮料的制作过程的时域角度转换为频域角度。

绘制对应的时间图和频率图如下所示:

傅里叶公式如下,其中w表示频率,t表示时间,为复变函数。它将时间域的函数表示为频率域的函数f(t)的积分。

傅里叶变换认为一个周期函数(信号)包含多个频率分量,任意函数(信号)f(t)可通过多个周期函数(或基函数)相加合成。从物理角度理解,傅里叶变换是以一组特殊的函数(三角函数)为正交基,对原函数进行线性变换,物理意义便是原函数在各组基函数的投影。如下图所示,它是由三条正弦曲线组合成。

傅里叶变换可以应用于图像处理中,经过对图像进行变换得到其频谱图。从谱频图里频率高低来表征图像中灰度变化剧烈程度。图像中的边缘信号和噪声信号往往是高频信号,而图像变化频繁的图像轮廓及背景等信号往往是低频信号。这时可以有针对性的对图像进行相关操作,例如图像除噪、图像增强和锐化等。

二维图像的傅里叶变换可以用以下数学公式(15-3)表达,其中f是空间域(Spatial Domain))值,F是频域(Frequency Domain)值

对上面的傅里叶变换有了大致的了解之后,下面通过Numpy和OpenCV分别讲解图像傅里叶变换的算法及操作代码。


二.Numpy实现傅里叶变换

Numpy中的 FFT包提供了函数 np.fft.fft2()可以对信号进行快速傅里叶变换,其函数原型如下所示,该输出结果是一个复数数组(Complex Ndarry)。

fft2(a, s=None, axes=(-2, -1), norm=None)

  • a表示输入图像,阵列状的复杂数组
  • s表示整数序列,可以决定输出数组的大小。输出可选形状(每个转换轴的长度),其中s[0]表示轴0,s[1]表示轴1。对应fit(x,n)函数中的n,沿着每个轴,如果给定的形状小于输入形状,则将剪切输入。如果大于则输入将用零填充。如果未给定’s’,则使用沿’axles’指定的轴的输入形状
  • axes表示整数序列,用于计算FFT的可选轴。如果未给出,则使用最后两个轴。“axes”中的重复索引表示对该轴执行多次转换,一个元素序列意味着执行一维FFT
  • norm包括None和ortho两个选项,规范化模式(请参见numpy.fft)。默认值为无

Numpy中的fft模块有很多函数,相关函数如下:

#计算一维傅里叶变换
numpy.fft.fft(a, n=None, axis=-1, norm=None)
#计算二维的傅里叶变换
numpy.fft.fft2(a, n=None, axis=-1, norm=None)
#计算n维的傅里叶变换
numpy.fft.fftn()
#计算n维实数的傅里叶变换
numpy.fft.rfftn()
#返回傅里叶变换的采样频率
numpy.fft.fftfreq()
#将FFT输出中的直流分量移动到频谱中央
numpy.fft.shift()

下面的代码是通过Numpy库实现傅里叶变换,调用np.fft.fft2()快速傅里叶变换得到频率分布,接着调用np.fft.fftshift()函数将中心位置转移至中间,最终通过Matplotlib显示效果图。

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

#读取图像
img = cv.imread('test.png', 0)

#快速傅里叶变换算法得到频率分布
f = np.fft.fft2(img)

#默认结果中心点位置是在左上角,
#调用fftshift()函数转移到中间位置
fshift = np.fft.fftshift(f)       

#fft结果是复数, 其绝对值结果是振幅
fimg = np.log(np.abs(fshift))

#展示结果
plt.subplot(121), plt.imshow(img, 'gray'), plt.title('Original Fourier')
plt.axis('off')
plt.subplot(122), plt.imshow(fimg, 'gray'), plt.title('Fourier Fourier')
plt.axis('off')
plt.show()

输出结果如图15-2所示,左边为原始图像,右边为频率分布图谱,其中越靠近中心位置频率越低,越亮(灰度值越高)的位置代表该频率的信号振幅越大。


三.Numpy实现傅里叶逆变换

下面介绍Numpy实现傅里叶逆变换,它是傅里叶变换的逆操作,将频谱图像转换为原始图像的过程。通过傅里叶变换将转换为频谱图,并对高频(边界)和低频(细节)部分进行处理,接着需要通过傅里叶逆变换恢复为原始效果图。频域上对图像的处理会反映在逆变换图像上,从而更好地进行图像处理。

图像傅里叶变化主要使用的函数如下所示:

#实现图像逆傅里叶变换,返回一个复数数组
numpy.fft.ifft2(a, n=None, axis=-1, norm=None)
#fftshit()函数的逆函数,它将频谱图像的中心低频部分移动至左上角
numpy.fft.fftshift()
#将复数转换为0至255范围
iimg = numpy.abs(逆傅里叶变换结果)

下面的代码分别实现了傅里叶变换和傅里叶逆变换。

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

#读取图像
img = cv.imread('Lena.png', 0)

#傅里叶变换
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
res = np.log(np.abs(fshift))

#傅里叶逆变换
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)

#展示结果
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(132), plt.imshow(res, 'gray'), plt.title('Fourier Image')
plt.axis('off')
plt.subplot(133), plt.imshow(iimg, 'gray'), plt.title('Inverse Fourier Image')
plt.axis('off')
plt.show()

输出结果如图15-4所示,从左至右分别为原始图像、频谱图像、逆傅里叶变换转换图像。


四.OpenCV实现傅里叶变换

OpenCV 中相应的函数是cv2.dft()和用Numpy输出的结果一样,但是是双通道的。第一个通道是结果的实数部分,第二个通道是结果的虚数部分,并且输入图像要首先转换成 np.float32 格式。其函数原型如下所示:

dst = cv2.dft(src, dst=None, flags=None, nonzeroRows=None)

  • src表示输入图像,需要通过np.float32转换格式
  • dst表示输出图像,包括输出大小和尺寸
  • flags表示转换标记,其中DFT _INVERSE执行反向一维或二维转换,而不是默认的正向转换;DFT _SCALE表示缩放结果,由阵列元素的数量除以它;DFT _ROWS执行正向或反向变换输入矩阵的每个单独的行,该标志可以同时转换多个矢量,并可用于减少开销以执行3D和更高维度的转换等;DFT _COMPLEX_OUTPUT执行1D或2D实数组的正向转换,这是最快的选择,默认功能;DFT _REAL_OUTPUT执行一维或二维复数阵列的逆变换,结果通常是相同大小的复数数组,但如果输入数组具有共轭复数对称性,则输出为真实数组
  • nonzeroRows表示当参数不为零时,函数假定只有nonzeroRows输入数组的第一行(未设置)或者只有输出数组的第一个(设置)包含非零,因此函数可以处理其余的行更有效率,并节省一些时间;这种技术对计算阵列互相关或使用DFT卷积非常有用

注意,由于输出的频谱结果是一个复数,需要调用cv2.magnitude()函数将傅里叶变换的双通道结果转换为0到255的范围。其函数原型如下:

cv2.magnitude(x, y)

  • x表示浮点型X坐标值,即实部
  • y表示浮点型Y坐标值,即虚部
    最终输出结果为幅值,即:

完整代码如下所示:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from matplotlib import pyplot as plt

#读取图像
img = cv2.imread('Lena.png', 0)

#傅里叶变换
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)

#将频谱低频从左上角移动至中心位置
dft_shift = np.fft.fftshift(dft)

#频谱图像双通道复数转换为0-255区间
result = 20*np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))

#显示图像
plt.subplot(121), plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(result, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

输出结果如图15-5所示,左边为原始“Lena”图,右边为转换后的频谱图像,并且保证低频位于中心位置。


五.OpenCV实现傅里叶逆变换

在OpenCV 中,通过函数cv2.idft()实现傅里叶逆变换,其返回结果取决于原始图像的类型和大小,原始图像可以为实数或复数。其函数原型如下所示:

dst = cv2.idft(src[, dst[, flags[, nonzeroRows]]])

  • src表示输入图像,包括实数或复数
  • dst表示输出图像
  • flags表示转换标记
  • nonzeroRows表示要处理的dst行数,其余行的内容未定义(请参阅dft描述中的卷积示例)

完整代码如下所示:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from matplotlib import pyplot as plt

#读取图像
img = cv2.imread('Lena.png', 0)

#傅里叶变换
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
dftshift = np.fft.fftshift(dft)
res1= 20*np.log(cv2.magnitude(dftshift[:,:,0], dftshift[:,:,1]))

#傅里叶逆变换
ishift = np.fft.ifftshift(dftshift)
iimg = cv2.idft(ishift)
res2 = cv2.magnitude(iimg[:,:,0], iimg[:,:,1])

#显示图像
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(132), plt.imshow(res1, 'gray'), plt.title('Fourier Image')
plt.axis('off')
plt.subplot(133), plt.imshow(res2, 'gray'), plt.title('Inverse Fourier Image')
plt.axis('off')
plt.show()

输出结果如图15-6所示,第一幅图为原始“Lena”图,第二幅图为傅里叶变换后的频谱图像,第三幅图为傅里叶逆变换,频谱图像转换为原始图像的过程。


六.总结

傅里叶变换的目的并不是为了观察图像的频率分布(至少不是最终目的),更多情况下是为了对频率进行过滤,通过修改频率以达到图像增强、图像去噪、边缘检测、特征提取、压缩加密等目的。下一篇文章,作者将结合傅里叶变换和傅里叶逆变换讲解它的应用。

时也,命也。
英语低分数线一分,些许遗憾,但不气馁,更加努力。雄关漫道真如铁,而今迈过从头越,从头越。苍山如海,残阳如血。感谢一路陪伴的人和自己。

无论成败,那段拼搏的日子都很美。结果只会让我更加努力,学好英语。下半年沉下心来好好做科研写文章,西藏之行,课程分享。同时,明天的博士考试加油,虽然裸泳,但也加油!还有春季招考开始准备。

最后补充马刺小石匠精神,当一切都看起来无济于事的时候,我去看一个石匠敲石头.他一连敲了100次,石头仍然纹丝不动。但他敲第101次的时候,石头裂为两半。可我知道,让石头裂开的不是那最后一击,而是前面的一百次敲击的结果。人生路漫漫,不可能一路一帆风顺,暂时的不顺只是磨练自己的必经之路,夜最深的时候也是距黎明最近的时刻,经历过漫漫长夜的打磨,你自身会更加强大。

最后希望这篇基础性文章对您有所帮助,如果有错误或不足之处,请海涵!

(By:Eastmount 2019-04-23 周二下午6点写于花溪 https://blog.csdn.net/Eastmount )

2016-04-18 11:39:47 GarfieldEr007 阅读数 6530

傅立叶变换在图像处理中非常的有用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,

比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。

印象中,傅立叶变换在图像处理以下几个话题都有重要作用:
1.图像增强与图像去噪
绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;
2.图像分割之边缘检测
提取图像高频分量
3.图像特征提取:
形状特征:傅里叶描述
纹理特征:直接通过傅里叶系数来计算纹理特征
其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性
4.图像压缩
可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;

傅立叶变换
傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。
傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面);

时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;

频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输);
卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点)

信号在频率域的表现
在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化快慢。高频分量解释信号的突变部分,而低频分量决定信号的整体形象。
在图像处理中,频域反应了图像在空域灰度变化剧烈程度,也就是图像灰度的变化速度,也就是图像的梯度大小。对图像而言,图像的边缘部分是突变部分,变化较快,因此反应在频域上是高频分量;图像的噪声大部分情况下是高频部分;图像平缓变化部分则为低频分量。也就是说,傅立叶变换提供另外一个角度来观察图像,可以将图像从灰度分布转化到频率分布上来观察图像的特征。书面一点说就是,傅里叶变换提供了一条从空域到频率自由转换的途径。对图像处理而言,以下概念非常的重要:

图像高频分量:图像突变部分;在某些情况下指图像边缘信息,某些情况下指噪声,更多是两者的混合;
低频分量:图像变化平缓的部分,也就是图像轮廓信息
高通滤波器:让图像使低频分量抑制,高频分量通过
低通滤波器:与高通相反,让图像使高频分量抑制,低频分量通过
带通滤波器:使图像在某一部分的频率信息通过,其他过低或过高都抑制
还有个带阻滤波器,是带通的反。


模板运算与卷积定理
在时域内做模板运算,实际上就是对图像进行卷积。模板运算是图像处理一个很重要的处理过程,很多图像处理过程,比如增强/去噪(这两个分不清楚),边缘检测中普遍用到。根据卷积定理,时域卷积等价与频域乘积。因此,在时域内对图像做模板运算就等效于在频域内对图像做滤波处理。
比如说一个均值模板,其频域响应为一个低通滤波器;在时域内对图像作均值滤波就等效于在频域内对图像用均值模板的频域响应对图像的频域响应作一个低通滤波。


图像去噪
图像去噪就是压制图像的噪音部分。因此,如果噪音是高频额,从频域的角度来看,就是需要用一个低通滤波器对图像进行处理。通过低通滤波器可以抑制图像的高频分量。但是这种情况下常常会造成边缘信息的抑制。常见的去噪模板有均值模板,高斯模板等。这两种滤波器都是在局部区域抑制图像的高频分量,模糊图像边缘的同时也抑制了噪声。还有一种非线性滤波-中值滤波器。中值滤波器对脉冲型噪声有很好的去掉。因为脉冲点都是突变的点,排序以后输出中值,那么那些最大点和最小点就可以去掉了。中值滤波对高斯噪音效果较差。

椒盐噪声:对于椒盐采用中值滤波可以很好的去除。用均值也可以取得一定的效果,但是会引起边缘的模糊。
高斯白噪声:白噪音在整个频域的都有分布,好像比较困难。
冈萨雷斯版图像处理P185:算术均值滤波器和几何均值滤波器(尤其是后者)更适合于处理高斯或者均匀的随机噪声。谐波均值滤波器更适合于处理脉冲噪声。


图像增强
有时候感觉图像增强与图像去噪是一对矛盾的过程,图像增强经常是需要增强图像的边缘,以获得更好的显示效果,这就需要增加图像的高频分量。而图像去噪是为了消除图像的噪音,也就是需要抑制高频分量。有时候这两个又是指类似的事情。比如说,消除噪音的同时图像的显示效果显著的提升了,那么,这时候就是同样的意思了。
常见的图像增强方法有对比度拉伸,直方图均衡化,图像锐化等。前面两个是在空域进行基于像素点的变换,后面一个是在频域处理。我理解的锐化就是直接在图像上加上图像高通滤波后的分量,也就是图像的边缘效果。对比度拉伸和直方图均衡化都是为了提高图像的对比度,也就是使图像看起来差异更明显一些,我想,经过这样的处理以后,图像也应该增强了图像的高频分量,使得图像的细节上差异更大。同时也引入了一些噪音。


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/wang_cww/archive/2010/08/09/5799221.aspx


from: http://blog.csdn.net/masibuaa/article/details/6316319