世界坐标系_世界坐标系原点在哪 - CSDN
精华内容
参与话题
  • 世界坐标系、相机坐标系、图像平面坐标系

    万次阅读 多人点赞 2018-07-12 18:04:09
    一、四个坐标系简介和转换 相机模型为以后一切标定算法的关键,只有这边有相当透彻的理解,对以后的标定算法才能有更好的理解。本人研究了好长时间,几乎每天都重复看几遍,最终才会明白其推导过程。   &...

    一、四个坐标系简介和转换

    相机模型为以后一切标定算法的关键,只有这边有相当透彻的理解,对以后的标定算法才能有更好的理解。本人研究了好长时间,几乎每天都重复看几遍,最终才会明白其推导过程。
         我觉得首先我们要理解相机模型中的四个平面坐标系的关系:像素平面坐标系(u,v)、像平面坐标系(图像物理坐标第(x,y)、相机坐标系(Xc,Yc,Zc)和世界坐标系(Xw,Yw,Zw),在每一篇介绍相机模型的文章中都有介绍。
         我刚开始理解时,看着那一堆的公式十分的头晕,我相信很多初学者和我一样,但仔细想想,只不过是,我们假设了一些参数,使四个坐标系之间的坐标联系起来,这样我们就可以从拍摄的图片上一个点坐标一路反推出世界中的那个点的坐标,这样就达到了我们的目的,三维重建。而那些我们假设的参数,就是我们要标定的内外参数。


    1、像素坐标与像平面坐标系之间的关系 
          确定他们的关系之前,我们可以假设每一个像素在u轴和v轴方向上的物理尺寸为dx和dy。仔细看下他们的模型可以推出以下公式(这个还是比较好理解的):






    解释:1、dx,dy,u0,v0其实都是我们假设出来的参数,dxdy表示感光芯片上像素的实际大小,是连接像素坐标系和真实尺寸坐标系的,u0,v0是图像平面中心,最终是要我们求的内外参数。
    得出这个公式后我们可以运用线性代数的知识把方程用矩阵形式表示:

    当然我们也可以用另一种矩阵形式表示:

    2、相机坐标系与世界坐标系之间的关系 

         这两个坐标系之间的关系我们可以旋转矩阵R和平移矩阵T来得到以下关系:


                                           

                                                                        公式4

       解释:1、 在这个公式中,R为3*3矩阵,T为3*1,0为(0,0,0),简化用Lw表示后为4*4矩阵。

    3、成像投影关系(相机坐标系与像平面坐标系) 


         在相机模型中我们可以得到以下公式:


                                           

                                                                     公式5

               解释:1、

    同样我们用矩阵形式表示:

                                              

                                                                           公式6


    4、得到公式


    而我们可以将以上公式综合一下就可以得到:

      

    因此,内参数矩阵可以表示为:

    =


    外参矩阵可以表示为:,由旋转矩阵R和平移向量T组成


    当然在好多资料上都有这种做法:



    上图中表示的情况是像素坐标系和图像物理坐标系的两个坐标轴不是平行的关系,像素坐标系的两个坐标轴也不是垂直90°的关系,而图像物理坐标系的两个坐标轴是垂直关系。所以,我们在转换两个坐标轴的坐标之间的关系时就必须考虑像素坐标系两个坐标轴之间的夹角了。就有了上面的不同的内参矩阵,理解了就好了。


    二、图像坐标:我想和世界坐标谈谈(B)

             玉米将在这篇博文中,对图像坐标与世界坐标的这场对话中涉及的第二个问题:谈话方式,进行总结。世界坐标是怎样变换进摄像机,投影成图像坐标的呢?

            玉米做了一个简单的图示,在这里做一个提纲。图中显示,世界坐标系通过刚体变换到达摄像机坐标系,然后摄像机坐标系通过透视投影变换到达图像坐标系。可以看出,世界坐标与图像坐标的关系建立在刚体变换和透视投影变换的基础上。为了奖励刚体变和透视投影变换沟通了“世界上最远的距离”,玉米在图上奖励了他们两朵小红花。哈哈


     首先,让我们来看一下刚体变换是如何将世界坐标系与图像坐标系联系起来的吧。这里,先对刚体变换做一个介绍:

            刚体变换(regidbody motion):三维空间中, 当物体不发生形变时,对一个几何物体作旋转, 平移运动,称之为刚体变换

    因为世界坐标系和摄像机坐标都是右手坐标系,所以其不会发生形变。我们想把世界坐标系下的坐标转换到摄像机坐标下的坐标,如下图所示,可以通过刚体变换的方式。空间中一个坐标系,总可以通过刚体变换转换到另外一个个坐标系的。转一转,走一走,就到另外一个坐标系下了。以前可能是面朝大海,经过平移旋转,最终可能只能面朝冰山了,哈哈


    下面让我来看一下,二者之间刚体变化的数学表达。


    其中,XC代表摄像机坐标系,X代表世界坐标系。R代表旋转,T代表平移。R、T与摄像机无关,所以称这两个参数为摄像机的外参数(extrinsic parameter)可以理解为两个坐标原点之间的距离,因其受x,y,z三个方向上的分量共同控制,所以其具有三个自由度。

             R则为分别绕XYZ三轴旋转的效果之和。如下面所示:



     R=r1*r2*r3.其由三个方向的θ控制,故具有三个自由度。

               好了,刚体变换就讲完了。大家应该都了解,世界坐标系到摄像机坐标系之间的转换过程了吧。

              接下来,让我们看看摄像机坐标下的坐标如何投影到图像坐标系下,最终变为照片中的一个像素。这其中包含两个过程:一是从摄像机坐标到“空间图像坐标”(x,y)所发生的透视投影;二是从“连续图像坐标”到“离散图像坐标”(u,v)。后者我们已经在第一篇博文中解释过。所以在这里,主要介绍一下透视投影。

             透视投影(perspective projection): 用中心投影法将形体投射到投影面上,从而获得的一种较为接近视觉效果的单面投影图。有一点像皮影戏。它符合人们心理习惯,即离视点近的物体大,离视点远的物体小,不平行于成像平面的平行线会相交于消隐点(vanish point)。

             啰嗦这么多,其实大家看看示意图,看看公式,秒懂。


      以图中B(XB,YB)点为例,在小孔成像摄像机模型下(几何分析的最常用模型)。这里的f为摄像机的焦距,其属于摄像机的内参数(intrinsic parameter)。其在成像平面上的投影点b(xb,yb)的坐标利用简单的相似三角形比例关系很容易求出:


    上面两式也阐明了摄像机坐标与图像坐标之间的透视投影关系。

                好吧,现在玉米已经把图像坐标与世界坐标之间的这场对话所需经历的三个波折的过程加以了解释。即:刚体变换、透视投影、(x,y)换(u,v)(ps.这个在上一篇博文中讲过)。接下来玉米用一张图把三个过程连接起来。实现从世界坐标(X,Y,Z)到(u,v)之间的转换。让图像坐标与世界坐标直接对话。

             下图中的转换关系,都是用齐次坐标表达的,大家会发现这样的表达非常整洁。

             其实这张图显示的过程还有一个名字:摄像机模型(camera model)。其实也就是摄像机的几何模型了。

             将三者相乘,可以把这三个过程和在一起,写成一个矩阵:


    P就是世界坐标到图像坐标的直接联系人,P就表示了一个投影相机,有下面公式:


    注意在表示齐次坐标时,需要在符号上面加个小帽子。除去齐次坐标控制位P23P具有11个自由度。


           摄像机模型及其中涉及的坐标系等,是弄清3D重建几何框架的基础。可以把它们视为基本运算关系。后面对于三维重建几何框架的推导,都是要用到三个基本坐标系和摄像机模型的。

            </div>
                </div>
    
    展开全文
  • 最近在网上看到了很多关于坐标系转换的帖子,但是其内容很多都是相互转载(甚至还有一部分是错误的),同时大部分的文章内容都是告诉你四种坐标系间的相互转化的数学公式,看完之后很多时候还是不知所云,本文意在...

    最近在网上看到了很多关于坐标系转换的帖子,但是其内容很多都是相互转载(甚至还有一部分是错误的),同时大部分的文章内容都是告诉你四种坐标系间的相互转化的数学公式,看完之后很多时候还是不知所云,本文意在深入浅出的围绕这四种坐标系的坐标系的建立、为什么要涉及这种坐标系、四种坐标系间的转换关系来展开,我们会在讲解的过程中通过问题的方式以及引入概念的方式来辅助读者更好的理解这四种坐标系的意义。

    引入概念1:相机成像模型

    引入这个概念有助于后面我们更好的理解四种坐标系的建立以及其存在的意义,各位读者应该对此部分内容有所理解:

     引入概念二:参考坐标系的关系

    这里,我们终于迎来了我们需要说明的四个坐标系的定义,分别是:

    1、图像像素坐标系:表示场景中三维点在图像平面上的投影,其坐标原点在CCD图像平面的左上角,u轴平行于CCD平面水平向右,v轴垂直于u轴向下,坐标使用(u,v)来表示。注:这里的(u,v)表示的是该像素在数组中的列数和行数

    2、图像物理坐标系:其坐标原点在CCD图像平面的中心,x,y轴分别平行于图像像素坐标系的坐标轴,坐标用(x,y)表示。

    3、相机坐标系:以相机的光心为坐标系原点,X,Y轴平行于图像坐标系的X,Y轴,相机的光轴为Z轴,坐标系满足右手法则。注:这里所指的相机的光心可以简单的理解为相机透镜的几何中心

    4、世界坐标系:也称为绝对坐标系,用于表示场景点的绝对坐标

    问题1:图像像素坐标系和图像物理坐标系区别是什么?有什么意义?

    很多读者看能看完这两个坐标系会觉得两者很相似,两个轴方向相同,处于同一平面,貌似只有原点不同。但实际上,两者的主要区别在于两者所代表的含义:

    1、图像像素坐标系是以像素为单位来描述一个点的位置的,单位只是一个计数单位(好比某同学是在班级里在第二排、第三列)

    2、图像物理坐标系是以物理单位(mm)来描述一个点的位置的,是具有实际物理含义的点(同样的例子,以班级几何中心为原点定义一个X,Y轴,告诉你某同学位于这个坐标轴的(4米,-5米)处,你也可以唯一的找到这个同学)

    3、上述两个坐标系具有转换关系,下面的内容会写到

    坐标转换1:图像像素坐标系和图像物理坐标系的转换

    这里我们需要先放一张像平面的正视图来更好的说明这个转换关系:

    由两个坐标系间的关系我们可以得到如下的转换关系:其中dx和dy表示每一个像素在u轴和v轴方向上的物理尺寸:

    通常,我们更倾向于将上面的式子表示为矩阵形式: 

    转换2:相机坐标系和世界坐标系的转换

    引入概念三:刚体变换

    刚体变换只改变物体的空间位置(平移)和朝向(旋转),而不改变其形状的变换(一种记忆方法,硬的东西:比如石头,你不能改变他的形状,只能把它旋转或者平移),可用两个变量来描述:正交单位旋转矩阵R,三维平移矢量T

    根据刚体变换,我们依旧可以用矩阵的形式来表示两个坐标系的转换:

    扩展阅读1:旋转矩阵和平移矢量

    有了上部分的内容,其实很多读者还想知道那旋转矩阵和平移矢量究竟是如何求得的呢?其实平移矢量我们很好理解,就是我们沿着各轴方向的平移量。而旋转矩阵却不是很好理解,在这里我们做一个具体的说明:

    旋转一共有三个自由度,即绕x,y,z旋转,根据旋转角度我们可以在各个方向上将旋转写成矩阵的形式,分别为r1,r2,r3,如下图所示,而旋转矩阵即为三个自由度的旋转矩阵的乘积,即:R=r1×r2×r3

    转换3:相机坐标系和图像物理坐标系间的转换

    这个转换呢,其实我们非常好理解,就是一个透视的关系,而实际运算过程中呢也就是利用三角形的相似性来进行计算的,首先我们看一下两个坐标系间的透视关系示意图:

     在这里,我们可以轻松的由三角形的相似原理可以得到如下的公式:

    同样,可以用矩阵的形式来表示:

     

    拓展阅读2:投影矩阵,扭转因子,内参矩阵,外参矩阵

    有了上面的式子我们把各个式子进行替换和组合就得到了一个长等式:

     其中:

    1、P为3×4矩阵,称为投影矩阵

    2、s称为扭转因子

    3、ku=f/dx,kv=f/dy

    4、K完全由ku,kv,s,u0,v0决定,只与相机内参有关,称为相机的内参矩阵

    5、[R T]由相机相对于世界坐标系的方位决定,称为相机的外参矩阵

    拓展阅读3:坐标系间转换图示

    参考文献:

    1、计算机双目立体视觉/高宏伟著

    2、https://blog.csdn.net/waeceo/article/details/50580607 

    3、https://blog.csdn.net/xueluowutong/article/details/80950915?utm_source=blogxgwz5

    4、https://blog.csdn.net/lyhbkz/article/details/82841511

    展开全文
  •   1.正文 图像处理、立体视觉等等方向常常涉及到四个...构建世界坐标系只是为了更好的描述相机的位置在哪里,在双目视觉中一般将世界坐标系原点定在左相机或者右相机或者二者X轴方向的中点。 接下来的重点,就...

    转:https://blog.csdn.net/chentravelling/article/details/53558096

     

    1.正文

    图像处理、立体视觉等等方向常常涉及到四个坐标系:世界坐标系、相机坐标系、图像坐标系、像素坐标系。例如下图:
    这里写图片描述
    构建世界坐标系只是为了更好的描述相机的位置在哪里,在双目视觉中一般将世界坐标系原点定在左相机或者右相机或者二者X轴方向的中点。
    接下来的重点,就是关于这几个坐标系的转换。也就是说,一个现实中的物体是如何在图像中成像的。

    1.1世界坐标系与相机坐标系

    这里写图片描述

    于是,从世界坐标系到相机坐标系,涉及到旋转和平移(其实所有的运动也可以用旋转矩阵和平移向量来描述)。绕着不同的坐标轴旋转不同的角度,得到相应的旋转矩阵,如下图所示:
    这里写图片描述

    那么从世界坐标系到相机坐标系的转换关系如下所示:
    这里写图片描述

    1.2相机坐标系与图像坐标系

    从相机坐标系到图像坐标系,属于透视投影关系,从3D转换到2D。
    这里写图片描述
    此时投影点p的单位还是mm,并不是pixel,需要进一步转换到像素坐标系。

    1.3图像坐标系与像素坐标系

    像素坐标系和图像坐标系都在成像平面上,只是各自的原点和度量单位不一样。图像坐标系的原点为相机光轴与成像平面的交点,通常情况下是成像平面的中点或者叫principal point。图像坐标系的单位是mm,属于物理单位,而像素坐标系的单位是pixel,我们平常描述一个像素点都是几行几列。所以这二者之间的转换如下:其中dx和dy表示每一列和每一行分别代表多少mm,即1pixel=dx mm
    这里写图片描述

    那么通过上面四个坐标系的转换就可以得到一个点从世界坐标系如何转换到像素坐标系的。
    这里写图片描述

    其中相机的内参和外参可以通过张正友标定获取(戳这里查看张正友标定的资料)。通过最终的转换关系来看,一个三维中的坐标点,的确可以在图像中找到一个对应的像素点,但是反过来,通过图像中的一个点找到它在三维中对应的点就很成了一个问题,因为我们并不知道等式左边的Zc的值。
    关于三维重建不是我的方向,但是深度值的获取是我项目中的一个需要解决的问题,这将涉及到后面的立体视觉知识。

    展开全文
  • 本文为转载,原博客地址:http://blog.csdn.net/waeceo/article/details/50580607一、四个坐标系简介和转换相机模型为以后一切... 我觉得首先我们要理解相机模型中的四个平面坐标系的关系:像素平面坐标系(u,v)...

    本文为转载,原博客地址:http://blog.csdn.net/waeceo/article/details/50580607

    一、四个坐标系简介和转换

    相机模型为以后一切标定算法的关键,只有这边有相当透彻的理解,对以后的标定算法才能有更好的理解。本人研究了好长时间,几乎每天都重复看几遍,最终才会明白其推导过程。
         我觉得首先我们要理解相机模型中的四个平面坐标系的关系:像素平面坐标系(u,v)、像平面坐标系(图像物理坐标第(x,y)、相机坐标系(Xc,Yc,Zc)和世界坐标系(Xw,Yw,Zw),在每一篇介绍相机模型的文章中都有介绍。
         我刚开始理解时,看着那一堆的公式十分的头晕,我相信很多初学者和我一样,但仔细想想,只不过是,我们假设了一些参数,使四个坐标系之间的坐标联系起来,这样我们就可以从拍摄的图片上一个点坐标一路反推出世界中的那个点的坐标,这样就达到了我们的目的,三维重建。而那些我们假设的参数,就是我们要标定的内外参数。


    1、像素坐标与像平面坐标系之间的关系 
          确定他们的关系之前,我们可以假设每一个像素在u轴和v轴方向上的物理尺寸为dx和dy。仔细看下他们的模型可以推出以下公式(这个还是比较好理解的):






    解释:1、dx,dy,u0,v0其实都是我们假设出来的参数,dxdy表示感光芯片上像素的实际大小,是连接像素坐标系和真实尺寸坐标系的,u0,v0是图像平面中心,最终是要我们求的内外参数。
    得出这个公式后我们可以运用线性代数的知识把方程用矩阵形式表示:

    当然我们也可以用另一种矩阵形式表示:

    2、相机坐标系与世界坐标系之间的关系 

         这两个坐标系之间的关系我们可以旋转矩阵R和平移矩阵T来得到以下关系:


                                           

                                                                        公式4

       解释:1、 在这个公式中,R为3*3矩阵,T为3*1,0为(0,0,0),简化用Lw表示后为4*4矩阵。

    3、成像投影关系(相机坐标系与像平面坐标系) 


         在相机模型中我们可以得到以下公式:


                                           

                                                                     公式5

               解释:1、

    同样我们用矩阵形式表示:

                                              

                                                                           公式6


    4、得到公式


    而我们可以将以上公式综合一下就可以得到:

      

    因此,内参数矩阵可以表示为:

    =


    外参矩阵可以表示为:,由旋转矩阵R和平移向量T组成


    当然在好多资料上都有这种做法:



    上图中表示的情况是像素坐标系和图像物理坐标系的两个坐标轴不是平行的关系,像素坐标系的两个坐标轴也不是垂直90°的关系,而图像物理坐标系的两个坐标轴是垂直关系。所以,我们在转换两个坐标轴的坐标之间的关系时就必须考虑像素坐标系两个坐标轴之间的夹角了。就有了上面的不同的内参矩阵,理解了就好了。


    二、图像坐标:我想和世界坐标谈谈(B)

             玉米将在这篇博文中,对图像坐标与世界坐标的这场对话中涉及的第二个问题:谈话方式,进行总结。世界坐标是怎样变换进摄像机,投影成图像坐标的呢?

            玉米做了一个简单的图示,在这里做一个提纲。图中显示,世界坐标系通过刚体变换到达摄像机坐标系,然后摄像机坐标系通过透视投影变换到达图像坐标系。可以看出,世界坐标与图像坐标的关系建立在刚体变换和透视投影变换的基础上。为了奖励刚体变和透视投影变换沟通了“世界上最远的距离”,玉米在图上奖励了他们两朵小红花。哈哈


     首先,让我们来看一下刚体变换是如何将世界坐标系与图像坐标系联系起来的吧。这里,先对刚体变换做一个介绍:

            刚体变换(regidbody motion):三维空间中, 当物体不发生形变时,对一个几何物体作旋转, 平移运动,称之为刚体变换

    因为世界坐标系和摄像机坐标都是右手坐标系,所以其不会发生形变。我们想把世界坐标系下的坐标转换到摄像机坐标下的坐标,如下图所示,可以通过刚体变换的方式。空间中一个坐标系,总可以通过刚体变换转换到另外一个个坐标系的。转一转,走一走,就到另外一个坐标系下了。以前可能是面朝大海,经过平移旋转,最终可能只能面朝冰山了,哈哈


    下面让我来看一下,二者之间刚体变化的数学表达。


    其中,XC代表摄像机坐标系,X代表世界坐标系。R代表旋转,T代表平移。R、T与摄像机无关,所以称这两个参数为摄像机的外参数(extrinsic parameter)可以理解为两个坐标原点之间的距离,因其受x,y,z三个方向上的分量共同控制,所以其具有三个自由度。

             R则为分别绕XYZ三轴旋转的效果之和。如下面所示:


     R=r1*r2*r3.其由三个方向的θ控制,故具有三个自由度。

               好了,刚体变换就讲完了。大家应该都了解,世界坐标系到摄像机坐标系之间的转换过程了吧。

              接下来,让我们看看摄像机坐标下的坐标如何投影到图像坐标系下,最终变为照片中的一个像素。这其中包含两个过程:一是从摄像机坐标到“空间图像坐标”(x,y)所发生的透视投影;二是从“连续图像坐标”到“离散图像坐标”(u,v)。后者我们已经在第一篇博文中解释过。所以在这里,主要介绍一下透视投影。

             透视投影(perspective projection): 用中心投影法将形体投射到投影面上,从而获得的一种较为接近视觉效果的单面投影图。有一点像皮影戏。它符合人们心理习惯,即离视点近的物体大,离视点远的物体小,不平行于成像平面的平行线会相交于消隐点(vanish point)。

             啰嗦这么多,其实大家看看示意图,看看公式,秒懂。


      以图中B(XB,YB)点为例,在小孔成像摄像机模型下(几何分析的最常用模型)。这里的f为摄像机的焦距,其属于摄像机的内参数(intrinsic parameter)。其在成像平面上的投影点b(xb,yb)的坐标利用简单的相似三角形比例关系很容易求出:


    上面两式也阐明了摄像机坐标与图像坐标之间的透视投影关系。

                好吧,现在玉米已经把图像坐标与世界坐标之间的这场对话所需经历的三个波折的过程加以了解释。即:刚体变换、透视投影、(x,y)换(u,v)(ps.这个在上一篇博文中讲过)。接下来玉米用一张图把三个过程连接起来。实现从世界坐标(X,Y,Z)到(u,v)之间的转换。让图像坐标与世界坐标直接对话。

             下图中的转换关系,都是用齐次坐标表达的,大家会发现这样的表达非常整洁。

             其实这张图显示的过程还有一个名字:摄像机模型(camera model)。其实也就是摄像机的几何模型了。

             将三者相乘,可以把这三个过程和在一起,写成一个矩阵:


    P就是世界坐标到图像坐标的直接联系人,P就表示了一个投影相机,有下面公式:


    注意在表示齐次坐标时,需要在符号上面加个小帽子。除去齐次坐标控制位P23P具有11个自由度。


           摄像机模型及其中涉及的坐标系等,是弄清3D重建几何框架的基础。可以把它们视为基本运算关系。后面对于三维重建几何框架的推导,都是要用到三个基本坐标系和摄像机模型的。


    展开全文
  • 世界坐标系

    2020-09-18 14:35:22
    百度
  • 相机 (外参:R,T ) [Xc,Yc,Zc]T表示相机坐标,[Xw,Yw,Zw,1]T表示归物体所在的世界坐标。R表示旋转矩阵,T表示平移矩阵。相机 ——&gt; 图像 (内参:f)从相机坐标系到图像坐标系,属于透视投影关系,从3D转换...
  • 许多场合下都需要用到坐标系的转换,那么坐标系转换中最重要...R矩阵是将坐标系b旋转为坐标系a下的旋转矩阵,T为B坐标系在A坐标系下的坐标,如果要改变方向将A坐标系下的点转换为B坐标系下的点的话,要重新计算新...
  • 摄像机矩阵由内参矩阵和外参矩阵组成,对摄像机矩阵进行QR分解可以得到内参矩阵和...外参包括旋转矩阵R3×3、平移向量T3×1,它们共同描述了如何把点从世界坐标系转换到摄像机坐标系,旋转矩阵描述了世界坐标系的坐...
  • solvepnp函数-世界坐标系

    千次阅读 2019-05-18 10:09:00
    世界坐标系是任意选定的,可以任意事先定义,然后给出每个特征点在世界坐标系下的三维坐标,然后以一定顺序存储这些点。 特征点的像素坐标,一般是通过角点检测算法直接得到的,角点检测算法有他自己的存储点的顺序...
  • 世界坐标系与摄像机坐标系的变换

    万次阅读 2018-02-27 17:01:42
    该文章是对《计算机视觉增强现实应用概论》中《增强现实的摄像机空间理论》这一节进行摘录和公式推导。...而以实物为原点建立的坐标系称为世界坐标系。 摄像机运用棱镜将获取到的图像通过小孔成像的方式缩小...
  • 世界坐标系,相机坐标系和图像坐标系的转换(Python)

    万次阅读 多人点赞 2020-10-20 10:58:47
    世界坐标系,相机坐标系和图像坐标系的转换(Python) 相机内参外参说明:https://panjinquan.blog.csdn.net/article/details/102502213 计算机视觉:相机成像原理:世界坐标系、相机坐标系、图像坐标系、像素坐标系...
  • 世界坐标系、相机坐标系、图像坐标系、像素坐标系之间的转换 图像处理、立体视觉等方向常常涉及到四个坐标系:世界坐标系、相机坐标系、图像坐标系、像素坐标系。例如下图: 构建世界坐标系只是为了更好的描述...
  • 世界坐标系,相机坐标系,图像坐标系,图像像素坐标系这四个坐标系的转换实质就是刚体变换、透视投影和数字化图像这几个成像里的步骤。 一、世界坐标系到相机坐标系 世界坐标系,也称为测量坐标系,它是一个三维...
  • 世界坐标系到成像坐标系的映射关系 透镜模型 近似关系(相似三角形) 新的改变 我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客: ...
  • 一文理解像素坐标系、图像坐标系、相机坐标系、世界坐标系
  • 1.世界坐标系 2.物体坐标系 3.惯性坐标系 二、坐标系之间的联系 一、坐标系的区别 1.世界坐标系 世界坐标系是一个特殊的坐标系,它建立了描述其他坐标系所需要的参考系。也就是说,可以用世界坐标系去描述...
  • 世界坐标系到相机坐标系

    千次阅读 2018-01-07 14:40:18
    依次有:物体坐标系,世界坐标系,相机坐标系,投影坐标系以及屏幕坐标系.我要讨论的就是这些坐标系间的转换。 这些坐标系不是凭空而来,他们都是为了完成计算机3D图形学最最最基本的目标而出现.计算机3D图形学最...
  • 屏幕坐标系,世界坐标系

    千次阅读 2013-03-26 10:08:25
    世界坐标系 这里只是介绍二维世界坐标系。如下图1。 (图1) 屏幕坐标系 屏幕坐标系,主要有两种, 第一种:以左上角为原点。代表的操作系统有Windows,Android,Symbian,iOS 的Core Graphics如图1左侧。 ...
  • LZ-Says:哎呦喂,时间,时间,慢点过~ 前言 Today,一起来了解下在Unity中的坐标系。...世界坐标系,也就是基于我们当前游戏场景而言。先来观察下某个游戏物体的坐标: 分别对应。X、Y以及Z轴。 当然...
  • 相机成像原理:世界坐标系、相机坐标系、图像坐标系、像素坐标系之间的转换
1 2 3 4 5 ... 20
收藏数 40,113
精华内容 16,045
关键字:

世界坐标系